DOI QR코드

DOI QR Code

Effect of Magnetic Damping on Measurement Speed in a VCA-driven Balancing Scale

VCA(Voice Coil Actuator) 구동 평형저울에서 VCA 자기 감쇠 특성이 측정 속도에 미치는 영향

  • An, Ji Yun (School of Mechtronical Engineering, Pusan National Unversity) ;
  • Ahn, Jung Hwan (School of Mechtronical Engineering, Pusan National Unversity)
  • Received : 2019.06.10
  • Accepted : 2019.07.22
  • Published : 2019.07.31

Abstract

In this study, in conjunction with a SIMULINK program based on system modeling of a voice-coil-actuator (VCA)-driven balancing scale, a proportional-integral-derivative control algorithm is implemented, and weighing characteristics are investigated through experiments and simulations. The extent to which the back electromotive force induced in the VCA-driven circuit and the magnetic damping induced by the coil wound bobbin of VCA affect the weighing speed is also investigated.

Keywords

HSSHBT_2019_v28n4_246_f0001.png 이미지

Fig. 1. Schematic diagram of a VCA-driven balancing scale

HSSHBT_2019_v28n4_246_f0002.png 이미지

Fig. 2. Free body diagram of lever motion in balancing scale: (a) Rotational motion model about a pivot ; (b) Rectilinear motion model

HSSHBT_2019_v28n4_246_f0003.png 이미지

Fig. 3. Structure of VCA

HSSHBT_2019_v28n4_246_f0004.png 이미지

Fig. 4. Equivalent circuit of VCA

HSSHBT_2019_v28n4_246_f0005.png 이미지

Fig. 5. Simulink model of a VCA driven balancing scale

HSSHBT_2019_v28n4_246_f0006.png 이미지

Fig. 6. Experimental setup 1. PC with LabVIEW 2. Power supply 3. VCA driver 4. DAQ board 5. Laser displacement sensor 6. Weighing pan 7. Resistor sensor 8.Voice coil actuator 9. Hinge & Lever

HSSHBT_2019_v28n4_246_f0007.png 이미지

Fig. 7. Effect of BEMF on step response of coil current and lever displacement : (a) kb=0, (b) kb=28.5.

HSSHBT_2019_v28n4_246_f0008.png 이미지

Fig. 8. Effect of magnetic damping coefficient(c) on responses of coil current and lever displacement : (a) c=16.5, (b) c=26.5, (c) c=36.5.

HSSHBT_2019_v28n4_246_f0009.png 이미지

Fig. 9. Behavior of displacement and current during balancing control

HSSHBT_2019_v28n4_246_f0010.png 이미지

Fig. 10. Effect of magnetic damping coefficient on behavior of displacement and current during simulated balancing control : (a) c=26.5, (b) c=16.5, (c) c=0.

References

  1. M. Glaser and M. Borys, "Precision mass measurements", Rep. Prog. Phys., Vol. 72, No. 12, pp. 216101(1)-216101(32), 2009.
  2. I. Schmidt, T. Hausotte, U. Gerhardt, E. Manske, and G. Jager, "Investigations and calculations into decreasing the uncertainty of a nanopositioning and nanomeasuring machine (NPM-Machine)", Meas. Sci. Technol., Vol. 18, No. 2, pp. 482-486, 2007. https://doi.org/10.1088/0957-0233/18/2/S22
  3. R. R. Marangoni, I. Rahneberg, F. Hilbrunner, R. Theska, and T. Frohlich, "Analysis of weighing cells based on the principle of electromagnetic force compensation", Meas. Sci. Technol., Vol. 28, No. 7, pp. 075101(1)-075101(7), 2017. https://doi.org/10.1088/1361-6501/aa6bcd
  4. Y. Yamakawa and T. Yamazaki, "Mathematical model of checkweigher with electromagnetic force balance", ACTA IMEKO, Vol. 3, No. 2, pp. 9-13, 2014. https://doi.org/10.21014/acta_imeko.v3i2.86
  5. J. Y. Yang, "A Study of a Load Cell Based High Speed Weighting Method for a Potato Sorter", M. S. thesis, Jeju National University, Jeju, Korea, 2002.
  6. J. D. Hwang, Y. K. Kwak, H. J. Jung, S. H. Kim, and J. H. Ahn, "Minimization of Modeling Error of the Linear Motion System with Voice Coil Actuator", Int. J. Control Autom. Syst., Vol. 6, No. 1, pp. 54-61, 2008.
  7. D.Y. Yun, DC motor control technology, Ohm, Seoul, pp. 124-129, 2015.
  8. Y. Li, Y. Li, L. Ren, Z. Lin, Q. Wang, Y. Xu, and J. Zou, "Analysis and Restraining of Eddy Current Damping Effects in Rotary Voice Coil Actuators", IEEE Trans. Energy Convers., Vol. 32, No. 1, pp. 309-317, 2017. https://doi.org/10.1109/TEC.2016.2614041