DOI QR코드

DOI QR Code

SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells

  • Jang, Mi Gyeong (Department of Biology, Jeju National University) ;
  • Ko, Hee Chul (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Kim, Se-Jae (Department of Biology, Jeju National University)
  • 투고 : 2019.06.03
  • 심사 : 2019.06.26
  • 발행 : 2019.07.30

초록

p-Coumaric acid (p-CA)는 항산화 및 항염 활성을 가진 식물계에서 가장 풍부한 식물화학물질이다. 그러나 위암세주포에서 p-CA의 항암 활성과 전사체 발현에 대한 연구는 아직까지 수행된 바 없다. 본 연구에서는 SNU-16 위암세포에서 p-CA에 의한 세포 증식 억제 및 전사체 프로파일에 미치는 영향을 조사하였다. p-CA는 세포사멸 단백질 발현을 조절하여 SNU-16 세포에서의 세포사멸을 유도하였다. RNA-seq 분석을 사용하여 p-CA처리에 의해 SNU-16 세포에서 차별적으로 발현된 유전자(DEGs)를 동정하였다. DEGs들의 gene ontology (GO) 술어로 유전자 산물을 검색한 결과, 주로 염증반응, 세포사멸 과정, 세포주기 및 면역 반응에 관여하는 생물학적 과정에 관여하는 것으로 나타났다. 또한, KEGG 경로분석 결과, p-CA는 주로 PI3K-Akt 와 암 신호전달 경로에 변화를 유발하였다. 본 연구결과는 p-CA가 세포증식과 암 신호 전달 경로에 관여하는 유전자 발현을 조절함으로써 위암 예방 효과를 나타낼 수 있음을 시사한다.

The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

키워드

SMGHBM_2019_v29n7_809_f0001.png 이미지

Fig. 1. Effects of p-CA on cell proliferation and apoptotic protein expression in SNU-16 cells. Cells were incubated with different concentrations of p-CA for 72 hr in SNU-16 cells (A) and Hs-68 cells (B). Cell viability was determined using the MTT assay. Data are means ± standard deviation (SD) of three independent experiments. *p<0.05, ** p<0.01, and ***p<0.001 compared to the untreated group. (C) Cells were treated with different concentrations of p-CA for 48 hr. The expression of Bcl-2, Bax, procaspase-3, cleaved capase-3, and PARP were analyzed by Western blotting.

SMGHBM_2019_v29n7_809_f0002.png 이미지

Fig. 2. Gene ontology (GO) analysis of differentially expressed genes (DEGs) regulated by p-CA in SNU-16 cells. DEGs were classified as biological process (BP), cellular component (CC), and molecular function (MF).

SMGHBM_2019_v29n7_809_f0003.png 이미지

Fig. 3. Protein–protein interaction networks among DEGs regulated by p-CA in SNU-16 cells. The protein-protein interaction network was constructed using the STRING online tool with a confidence score >0.4. The nodes represent proteins, edges represent interactions between proteins, and the colors of the nodes represent the log2 fold change in expression level.

SMGHBM_2019_v29n7_809_f0004.png 이미지

Fig. 4. Quantitative determination of differentially expressed genes by real-time PCR. Data are means ± standard deviation (SD) of three independent experiments. *p<0.05, **p<0.01, and ***p<0.001 compared to the untreated group.

Table 1. The primer sequences of the genes used in Real-time PCR analysis

SMGHBM_2019_v29n7_809_t0001.png 이미지

Table 2. The pathway analysis of genes differentially regulated by p-CA in SNU-16 gastric cancer cells (p<0.05)

SMGHBM_2019_v29n7_809_t0002.png 이미지

참고문헌

  1. Benson, A. B. 3rd. 2006. New approaches to the adjuvant therapy of colon cancer. Oncologist 11, 973-980. https://doi.org/10.1634/theoncologist.11-9-973
  2. Burlacu, A. 2003. Regulation of apoptosis by bcl-2 family proteins. J. Cell Mol. Med. 7, 249-257. https://doi.org/10.1111/j.1582-4934.2003.tb00225.x
  3. Chung, M. Y., Lim, T. G. and Lee, K. W. 2013. Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World J. Gastroenterol. 19, 984-993. https://doi.org/10.3748/wjg.v19.i7.984
  4. El-Seedi, H. R., El-Said, A. M., Khalifa, S. A., Göransson, U., Bohlin, L., Borg-Karlson, A. K. and Verpoorte, R. 2012. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 60, 10877-108953. https://doi.org/10.1021/jf301807g
  5. Fulda, S. and Debatin, K. M. 2004. Targeting apoptosis pathways in cancer therapy. Current. Cancer Drug Targets 7, 569-576. https://doi.org/10.2174/1568009043332763
  6. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y. and Zhang, J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80. https://doi.org/10.1186/gb-2004-5-10-r80
  7. Hata, A. N., Engelman, J. A. and Faber, A. C. 2015. The BCL-2 family: key mediators of the apoptotic response to targeted anti-cancer therapeutics. Cancer Discov. 5, 475-487. https://doi.org/10.1158/2159-8290.CD-15-0011
  8. Hu, W. Q., Peng, C. W. and Li, Y. 2009. The expression and significance of P-glycoprotein, lung resistance protein and multi-drug-resistance-associated protein in gastric cancer. Exp. Clin. Cancer Res. 28, 144. https://doi.org/10.1186/1756-9966-28-144
  9. Jang, M. G., Ko, H. C. and Kim, S. J. 2018 Effect of sasa quelpaertensis Nakai extracts and its constituent p-coumaric acid on the apoptosis of human cancer cell lines. Nat. Prod. Sci. 24, 293-297. https://doi.org/10.20307/nps.2018.24.4.293
  10. Jaganathan, S. K. and Supriyanto, M. M. 2013. Events associated with apoptotic effect of p -Coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol. 19, 7726-7734. https://doi.org/10.3748/wjg.v19.i43.7726
  11. Janicke, B., Onning, G. and Oredsson, S. M. 2005. Differential effects of ferulic acid and p-coumaric acid on S phase distribution and length of S phase in the human colonic cell line Caco-2. J. Agric. Food Chem. 53, 6658-6665. https://doi.org/10.1021/jf050489l
  12. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman, D. 2011. Global cancer statistics. CA. Cancer J. Clin. 6, 69-90.
  13. Kilic, I. and Yesiloglu, Y. 2013. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 115, 719-724. https://doi.org/10.1016/j.saa.2013.06.110
  14. Kuwana, T., Mackey, M.R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R. and Newmeyer, D. D. 2002. Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331-342. https://doi.org/10.1016/S0092-8674(02)01036-X
  15. Leung, W. K., Wu, M. S., Kakugawa, Y., Kim, J. J., Yeoh, K. G., Goh, K. L., Wu, K. C., Wu, D. C., Sollano, J., Kachintorn, U., Gotoda, T., Lin, J. T., You, W. C., Ng, E. K. and Sung, J. J. 2008. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol. 9, 279-287. https://doi.org/10.1016/S1470-2045(08)70072-X
  16. Misiakos, E. P., Karidis, N. P. and Kouraklis, G. 2011. Current treatment for colorectal liver metastases. World J. Gastroenterol. 17, 4067-4075. https://doi.org/10.3748/wjg.v17.i36.4067
  17. Nakajima, T., Nishi, M. and Kajitani, T. 1991. Improvement in treatment results of gastric cancer with surgery and chemotherapy: experience of 9,700 cases in the CancerInstitute Hospital, Tokyo. Semin. Surg. Oncol. 7, 365-372. https://doi.org/10.1002/ssu.2980070608
  18. Natella, F., Nardini, M., Belelli, F. and Scaccini, C. 2007. Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am. J. Clin. Nutr. 86, 604-609. https://doi.org/10.1093/ajcn/86.3.604
  19. Ohtsu, A. 2008. Chemotherapy for metastatic gastric cancer: past, present, and future. J. Astroenterol. 43, 256-264. https://doi.org/10.1007/s00535-008-2177-6
  20. Pragasam, S. J., Venkatesan, V. and Rasool, M. 2013. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 36, 169-176. https://doi.org/10.1007/s10753-012-9532-8
  21. Pei, K., Ou, J., Huang, J. and Ou, S. 2016. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 96, 2952-2962. https://doi.org/10.1002/jsfa.7578
  22. Peng, W., Wu, J. G., Jiang, Y. B., Liu, Y. J., Sun, T., Wu, N. and Wu, C. J. 2015 Antitumor activity of 4-O-(2''-O-acetyl-6''-O-p-coumaroyl-${\beta}$-D-glucopyranosyl)-p-coumaric acid against lung cancers via mitochondrial-mediated apoptosis. Chem. Biol. Interact. 233, 8-13. https://doi.org/10.1016/j.cbi.2015.03.014
  23. Quinlan, A. R. and Hall, I. M. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 https://doi.org/10.1093/bioinformatics/btq033
  24. Sharma, S. H., Rajamanickam, V. and Nagarajan, S. 2018. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact. 291, 16-28. https://doi.org/10.1016/j.cbi.2018.06.001
  25. Stoner, G. D. and Mukhtar, H. 1995. Polyphenols as cancer chemopreventive agents. J. Cell Biochem. Suppl. 22, 169-80. https://doi.org/10.1002/jcb.240590822
  26. Tanida, I., Shirasago, Y., Suzuki, R., Abe, R., Wakita, T., Hanada, K. and Fukasawa, M. 2015. Inhibitory effects of caffeic acid, a coffee-related organic acid, on the propagation of hepatitis C virus. Jpn. J. Infect. Dis. 68, 268-75. https://doi.org/10.7883/yoken.JJID.2014.309
  27. Trapnell, C., Pachter, L. and Salzberg, S. L. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111. https://doi.org/10.1093/bioinformatics/btp120
  28. Wagner, A. D., Grothe, W., Haerting, J., Kleber, G., Grothey, A. and Fleig, W. E. 2006. Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data. J. Clin. Oncol. 24, 2903-2909. https://doi.org/10.1200/JCO.2005.05.0245
  29. Yoshikawa, T., Tsuburaya, A., Kobayashi, O., Sairenji, M., Motohashi, H. and Noguchi, Y. 2003. A combination immunochemotherapy of 5-fluorouracil, cisplatin, leucovorin, and OK-432 for advanced and recurrent gastric carcinoma. Hepatogastroenterology 50, 2259-2263.
  30. Yu, W., Whang, I., Suh, I., Averbach, A., Chang, D. and Sugarbaker, P. H. 1998. Prospective randomized trial of early postoperative intraperitoneal chemotherapy as an adjuvant to resectable gastric cancer. Ann. Surg. 228, 347-354. https://doi.org/10.1097/00000658-199809000-00007
  31. Zang, L. Y., Cosma, G., Gardner, H., Shi, X., Castranova, V. and Vallyathan, V. 2000. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation, American journal of physiology. Cell Physiol. 279, 954-960.