DOI QR코드

DOI QR Code

변색기 고온에 의한 포도 '거봉'의 과피 착색 및 내생 호르몬 변화

Skin Coloration and Endogenous Hormonal Changes of 'Kyoho' Grape by High Temperature at Veraison

  • 류수현 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 조정건 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 정재훈 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 이슬기 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 한점화 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 김명수 (농촌진흥청 국립원예특작과학원 원예작물부 과수과)
  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Cho, Jung-Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Seul-Ki (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Myung-Su (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 투고 : 2019.05.27
  • 심사 : 2019.07.23
  • 발행 : 2019.07.30

초록

여름철 고온에 의한 포도 '거봉'의 과피색 불량의 원인을 구명하기 위해, 고온에 따른 과피의 착색 및 식물호르몬 ABA와 GA의 함량 및 대사 관련 유전자의 발현을 분석하였다. 변색기부터 10일 동안의 고온에 의해 '거봉' 포도의 과피색 불량이 나타났으며, 착색을 제외한 나머지 과실품질에는 영향이 없었다. 과피의 총 안토시아닌이 고온처리에 의해 감소하였으며, 안토시아니딘 그룹별로는 malvidin과 peonidin이 대조구에 비해 감소하였다. 과피의 식물호르몬 ABA와 GA의 함량을 분석한 결과, ABA는 고온에 의해 감소하지 않았으며 오히려 대조구에 비해 약간 높은 경향을 보였다. GA는 고온 처리 종료 10일 후부터 대조구의 약 2배로 증가하였으며, 이로 인해 ABA/GA의 비율이 대조구에 비해 감소하였다. 시기별 안토시아닌 생합성 유전자의 발현을 분석한 결과, 초기 생합성 유전자는 고온에 의해 영향을 받지 않았고, 가장 마지막 단계를 조절하는 UFGT의 발현이 고온 처리에 의해 감소하였다. ABA와 GA의 대사 관련 유전자 발현을 분석한 결과, 고온에 의해 ABA의 생합성이 영향을 받지 않았고, GA의 생합성을 유도하는 GA20ox1의 발현이 증가하고 불활성화에 관여하는 GA2ox1/2의 발현이 감소하였다. 따라서 본 연구를 통해 변색 초기의 고온으로 인한 '거봉' 포도의 과피색 불량은 과피의 안토시아닌 생합성이 억제되었기 때문이었고, 안토시아닌 생합성이 ABA의 절대적인 함량 보다는 ABA와 GA의 비율로서 조절되고 있다고 판단되었다.

We analyzed the anthocyanin accumulation, abscisic acid (ABA), gibberellic acid (GA) contents and metabolic genes expression in berry skins under high temperature (High T) at veraison, in order to investigate the cause of bad coloration of 'Kyoho' grape due to High T in summer season. The coloration of 'Kyoho' grapes was stopped by High T for 10 days from veraison, and the fruit quality was not affected except skin color. Total anthocyanin of skins was decreased by High T treatment and malvidin and peonidin were decreased compared to control. In berry skins, ABA content did not decrease by High T treatment, but it was rather higher than that of control. GA content was increased about two times compared to the control after 10 days of High T treatment, which caused decreased ratio of ABA/GA. Analysis of expression of anthocyanin biosynthetic genes showed that the early biosynthetic genes were not affected by High T and the expression of UFGT was decreased by temperature treatment. ABA biosynthetic gene expressions were not affected by High T and the expression of GA20ox1 and GA2ox1/2, which are known to regulate the biosynthesis and inactivation of GA, were increased and decreased by High T, respectively. Therefore, the bad coloration of 'Kyoho' grapes under the High T at veraison was due to inhibition of anthocyanin biosynthesis of skin, and it was suggested that the anthocyanin biosynthesis was controlled by the ratio of ABA and GA rather than ABA content.

키워드

참고문헌

  1. Azuma, A., H. Yakushiji, Y. Koshita, and S. Kobayashi. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067-1080. https://doi.org/10.1007/s00425-012-1650-x
  2. Cantin, C.M., M.W. Fidelibus, and C.H. Crisosto. 2007. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of 'Crimson Seedless' grapes. Postharvest Biol. Technol. 46:237-241. https://doi.org/10.1016/j.postharvbio.2007.05.017
  3. Carbonell-Bejerano, P., E.S. Maria, R. Torres-Perez, C. Royo, D. Lijavetzky, G. Bravo, J. Aguirreolea, M. Sanchez-Diaz, M.C. Antolin, and J.M. Martinez-Zapater. 2013. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Plant Cell Physiol. 54:1200-1216. https://doi.org/10.1093/pcp/pct071
  4. Castellarin, S.D., and G.D. Gaspero. 2007. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 7:46. https://doi.org/10.1186/1471-2229-7-46
  5. Castellarin, S.D., M.A. Matthews, G.D. Gaspero, and G.A. Gambetta. 2007. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101-112. https://doi.org/10.1007/s00425-007-0598-8
  6. Das, P.K., D.H. Shin, S.B. Choi, and Y.I. Park. 2012. Sugarhormone cross-talk in anthocyanin biosynthesis. Mol. Cells 34:501-507. https://doi.org/10.1007/s10059-012-0151-x
  7. Fortes, A.M., R.T. Teixeira, and P. Agudelo-Romero. 2015. Complex interplay of hormonal signals during grape berry ripening. Molecules 20:9326-9343. https://doi.org/10.3390/molecules20059326
  8. He, F., L. Mu, G.L. Yan, N.N. Liang, Q.H. Pan, J. Wang, M.J. Reeves, and C.Q. Duan. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057-9091. https://doi.org/10.3390/molecules15129057
  9. Jeong, S.T., N. Goto-Ymamamoto, S. Kobayashi, and M. Esaka. 2004. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 167:247-252. https://doi.org/10.1016/j.plantsci.2004.03.021
  10. Koshita, Y., T. Asakura, H. Fukuda, and Y. Tsuchida. 2007. Nighttime temperature treatment of fruit clusters of ‘Aki Queen’ grapes during maturation and its effect on the skin color and abscisic acid content. Vitis 46:208-209.
  11. Koshita, Y., T. Yamane, H. Yakushiji, A. Azuma, and N. Mitani. 2011. Regulation of skin color in 'Aki Queen' grapes: Interactive effects of temperature, girdling, and leaf shading treatments on coloration and total soluble solids. Sci. Hort. 129:98-101. https://doi.org/10.1016/j.scienta.2011.03.014
  12. Lemut, M.S., K. Trost, P. Sivilotti, and U. Vrhovsek. 2011. Pinot Noir grape colour related phenolics as affected by leaf removal treatments in the Vipava Valley. J. Food Compost. Anal. 24:777-784 https://doi.org/10.1016/j.jfca.2011.03.003
  13. Li, Y., R. Ma, Z. Xu, J. Wang, T. Chen, F. Chen, and Z. Wang. 2013. Identification and quantification of anthocyanins in Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin. J. Sci. Food Agric. 93:1404-1411. https://doi.org/10.1002/jsfa.5907
  14. Loreti, E., G. Povero, G. Novi, C. Solfanelli, A. Alpi, and P. Perata. 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol. 179:1004-1016. https://doi.org/10.1111/j.1469-8137.2008.02511.x
  15. Mori, K., S. Sugaya, and H. Gemma. 2004. Regulatory mechanism of anthocyanin biosynthesis in 'Kyoho' grape berries grown under different temperature conditions. Environ. Contr. Biol. 42:21-30. https://doi.org/10.2525/ecb1963.42.21
  16. Pastore, C., S.D. Santo, S. Zenoni, N. Movahed, G. Allegro, G. Valentini, I. Filippetti, and G.B. Tornielli. 2017. Whole plant temperature manipulation affects flavonoid metabolism and the transcriptome of grapevine berries. Front. Plant Sci. 8:929. https://doi.org/10.3389/fpls.2017.00929
  17. Park, S.J., J.G. Kim, S.M. Jung, J.H. Noh, Y.Y. Hur, M.S. Ryou, and H.C. Lee. 2010. Relationship between berry set density and fruit quality in 'Kyoho' grape. Kor. J. Hort. Sci. Technol. 28:954-958(in Korean).
  18. Pilati, S., G. Bagagli, P. Sonego, M. Moretto, D. Brazzale, G. Castorina, L. Simoni, C. Tonelli, G. Guella, K. Engelen et al. 2017. Abscisic acid is a major regulator of grape berry ripening onset: new insights into ABA signaling network. Front. Plant Sci. 8:1093. https://doi.org/10.3389/fpls.2017.01093
  19. De Rosas, I., M.T. Ponce, E. Malovini, L. Deis, B. Cavagnaro, and P. Cavagnaro. 2017. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions. Plant Sci. 258:137-145. https://doi.org/10.1016/j.plantsci.2017.01.015
  20. Ryu, S., Y.H. Kwon, G.R. Do, J.H. Jeong, H.H. Han, and J.H. Han. 2016. Effects of abscisic acid (ABA) and fluridone on red coloration of 'Hongro' apple fruit skins. Protected Hort. Plant Fac. 25:240-248(in Korean). https://doi.org/10.12791/KSBEC.2016.25.4.240
  21. Ryu, S., H.H. Han, J.H. Jeong, Y.H. Kwon, J.H. Han, G.R. Do, I.M. Choi, and H.J. Lee. 2017. Night temperatures affect fruit coloration and expressions of anthocyanin biosynthetic genes in 'Hongro' apple fruit skins. Eur. J. Hortic. Sci. 82:232-238. https://doi.org/10.17660/eJHS.2017/82.5.2
  22. Ryu, S., J.H. Han, H.H. Han, J.H. Jeong, J.G. Cho, and G.R. Do. 2018. Changes of fruit quality and anthocyanin composition of 'Kyoho' and 'Heukboseok' grape berry skins under high temperature at veraison. Protected Hort. Plant Fac. 27:213-221(in Korean). https://doi.org/10.12791/KSBEC.2018.27.3.213
  23. Shinomiya, R., H. Fujishima, K. Muramoto, and M. Shiraishi. 2015. Impact of temperature and sunlight on the skin coloration of the 'Kyoho' table grape. Sci. Hort. 193:77-83. https://doi.org/10.1016/j.scienta.2015.06.042
  24. Tarara, J.M., J. Lee, S.E. Spayd, and C.F. Scagel. 2008. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 59:235-247.
  25. Yamane, T., S.T. Jeong, N. Goto-Yamamoto, Y. Koshita, and S. Kobayashi. 2006. Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am. J. Enol. Vitic. 57:54-59.
  26. Weiss, D., and N. Ori. 2007. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144:1240-1246. https://doi.org/10.1104/pp.107.100370
  27. Wheeler, S., B. Loveys, C. Ford, and C. Davies. 2009. The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust. J. Grape Wine Res. 15:195-204. https://doi.org/10.1111/j.1755-0238.2008.00045.x