Fig. 1. Exemplary structure of solar cell fabricated on stainless steel substrate.
Fig. 3. Conceptual diagram of current solar cell fabrications. It should be noted that the comparison of solar cells were the material substitution of oxides buffer layer by silicone resin in this study. (a) Planarization by sol-gel method, (b) Planarization by silicone resin application.
Fig. 2. Surface image of SST-430. Horizontal lines as well as deep scratches were observed, which is typical in case of flatrolled product.
Fig. 4. Surface images of silicone resin coated STS-430 observed by (a) optical microscope and (b) scanning electron microscope.
Fig. 6. Cross-sectional images of buckled solar cell taken by SEM.
Fig. 5. FM image of the surface of silicone resin fabricated.
Fig. 7. Performance (current-voltage) data of silicone resin coated solar cell. Efficiency is recorded to 5.99%.
Table 1. Characteristics of Silres REN60, silicone resin [5]
Table 2. Performance data of solar cell fabricated with silicone resin
References
- https://www.nrel.gov/pv/cell-efficiency.html.
- Jager, K., Isabella, O., Smets, A. H. M., van Swaij, R. A. C. M. M. and Zeman, M., Solar Energy Fundamentals, Technology, and Systems," Deft University of Technology, 163-205(2014).
- Yun, S. J., Lee, Y. J., Lim, J. W., Yun, J. H., Baek, J., Kim, K. B. and Park, Y. J., "Insulating Oxide Buffer Layer Formed by Sol-gel Method for Planarization of Stainless Steel Substrate of a-Si:H Thin Film Solar Cell," Materials Research Bulletin, 47, 3044-3047(2012). https://doi.org/10.1016/j.materresbull.2012.04.129
- Lee, Y. J., Yeon, C. B., Yun, S. J., Lee, K.-S., Lim, J. W., Kim, K.-B. and Baek, J., "High Roughness Ag Back Reflector on a Metal Underlayer for Thin Film Solar Cell Applications," Materials Research Bulletin, 48, 5093-5098(2013). https://doi.org/10.1016/j.materresbull.2013.07.032
- https://www.wacker.com/cms/en/products/product/product.jsp?product=10109.
- Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. and Whitesides, G. M., "Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on An Elastomeric Polymer," Nature, 393, 146-149(1998). https://doi.org/10.1038/30193
- Hendricks, T. R. and Lee, I., "Wrinkle-free Nanomechanical Film: Control and Prevention of Polymer Film Buckling," Nano Letters, 7, 372-379(2007). https://doi.org/10.1021/nl062544q
- Hyun, D. C. and Jeong, U., "Substrate Thickness: An Effective Control Parameter for Polymer Thin Buckling on PDMS Substrates," Journal of Applied Polymer Science, 112, 2683-2690(2009). https://doi.org/10.1002/app.29824
- Takahashi, M., Maeda, T., Uemura, K., Yao, J., Tokuda, Y., Yoko, T., Kaji, H., Marcelli, A. and Innocenzi, P., "Photoinduced Formation of Wrinkled Microstructures with Long-Range Order in Thin Oxide Films," Adv. Mater., 19, 4343-4346(2007). https://doi.org/10.1002/adma.200701322
- Minami, T., New N-type Transparent Conducting Oxides, MRS Bull., 149, 38-44(2000). https://doi.org/10.1557/mrs2000.149
- de Souza, A. G., Davolos, M. R., Masaki, N., Yanagina, S., Morandeira, A., Durrant, J. R., Freitas, J. N., Nogueira, A. F., "Synthesis and Characterization of ZnO and ZnO:Ga Films and Their Application in Dye-Sensitized Solae Cells," Dalton Trans., 11(11), 1487-1491(2008).
- Hirasaka, M., Suzuki, K., Nakatani, K., Asano, M., Yano, M. and Okaniwa, H., "Design of Textured Al Electrode for a Hydrogenated Amorphous Silicon Solar Cell," Solar Energy Materials, 20, 99-110(1990). https://doi.org/10.1016/0165-1633(90)90021-R
- Brand, V., Levi, K., McGehee, M. D. and Dauskardt, R. H., "Film Stresses and Electrode Buckling in Organic Solar Cells," Solar Energy Materials & Solar Cells, 103, 80-85(2012). https://doi.org/10.1016/j.solmat.2012.04.003