DOI QR코드

DOI QR Code

A Study on the Weight Reduction of X,Y stage of Semiconductor Inspection Equipment using Sensitivity Analysis

민감도 분석을 이용한 반도체 검사 장비의 X, Y 스테이지 구조의 경량화 연구

  • Koh, Man Soo (Department of Mechanical Engineering, Hoseo University) ;
  • Kwon, Soon Ki (Department of Mechanical Engineering, Hoseo University) ;
  • Kim, Cham Nae (R&D Center, AURA Precision Co. Ltd.)
  • Received : 2019.04.19
  • Accepted : 2019.07.20
  • Published : 2019.07.28

Abstract

Sensitivity analysis is used to determine the effect of a change in a design parameter on the total system, and the calculated sensitivity is an important indicator of the improvement of a structure. In this study, we investigated the method of deriving and analyzing the sensitivity of design parameters by using finite element analysis and the method of improving a structure by using sensitivity analysis results. Design parameters for weight reduction design were selected using actual semiconductor inspection equipment that requires structural improvement, and the sensitivity to design parameters was calculated by using and finite difference method. We propose an improvement method that can reduce the weight while maintaining the transient response required by the equipment. By using the results of the sensitivity analysis through finite element analysis and finite difference method, we can create a structurally improved design that satisfies the desired stress or displacement by improving the design of the structure. Therefore, sensitivity analysis is applicable to various fields as well as semiconductor inspection equipment.

민감도 해석은 어떤 설계 변수의 변화가 전체 시스템에 미치는 영향을 확인하기 위한 방법으로, 계산된 민감도는 구조개선 시 중요한 지표가 된다. 본 연구에서는 유한요소해석을 이용하여 설계 변수에 대한 민감도 도출 및 분석 방법과, 민감도 결과를 활용한 구조개선 방법을 제안하였다. 구조 개선이 필요한 실제 반도체 검사 장비를 이용하여 경량화를 위한 설계 변수를 선정하고 설계 변수에 대한 민감도를 유한요소법과 유한차분법을 활용하여 계산하였으며, 장비가 요구하는 과도응답(Transient Response)은 유지하면서도 무게 감소가 가능한 개선 방안을 제시하였다. 유한요소해석과 유한차분법을 이용한 민감도 분석 결과를 이용한다면 구조물의 설계 개선 시 원하는 응력 또는 변위는 만족하면서도 구조적으로 향상된 설계를 할 수 있고, 이는 반도체 검사 장비뿐만 아니라 다양한 분야에서 활용이 가능하다.

Keywords

DJTJBT_2019_v17n7_125_f0001.png 이미지

Fig. 1. Transient Response at a Center of Camara with Comparing to the Pixel Size

DJTJBT_2019_v17n7_125_f0002.png 이미지

Fig. 2. Part Names and Materials of Equipment

DJTJBT_2019_v17n7_125_f0003.png 이미지

Fig. 3. Boundary Condition and Loading Conditions

DJTJBT_2019_v17n7_125_f0004.png 이미지

Fig. 4. Mode Shapes of 1st to 4th Modes

DJTJBT_2019_v17n7_125_f0005.png 이미지

Fig. 5. Transient Response versus time of X-axis Impact

DJTJBT_2019_v17n7_125_f0006.png 이미지

Fig. 6. Transient Response versus time of Y-axis Impact

DJTJBT_2019_v17n7_125_f0007.png 이미지

Fig. 7. Design Variables for Sensitivity Analysis

DJTJBT_2019_v17n7_125_f0009.png 이미지

Fig. 8. Proposed Weight Reduction Design A

DJTJBT_2019_v17n7_125_f0010.png 이미지

Fig. 9. Proposed Weight Reduction Design B

Table 1. Maximum Transient Response due to Impact of Moving Parts

DJTJBT_2019_v17n7_125_t0001.png 이미지

Table 2. Sensitivities of Design Variables

DJTJBT_2019_v17n7_125_t0002.png 이미지

Table 3. Weight Reduction and Maximum Displacement of Proposed Designs

DJTJBT_2019_v17n7_125_t0003.png 이미지

References

  1. S. K. Kwon. (2012). Weight Reduction for Compressor Brackets, KSMTE, 21(1), 65-69.
  2. D. W. Kim, J. H. Lim, B. M. Yu & K. S. Lee. (2018). Thickness Optimization for the Spar Cap of Wind Turbine Blade based on Tsai-Wu and Puck Theory. The Journal of Korean society for Aeronautical & Space Sciences, 18(4), 79-80.
  3. D. W. Kim, G. Jeong, J. H. Lim, J. W. Lim, B. M. Yu & K. S. Lee. (2018). A Lightweight Design of the Spar cap of Wind Turbine Blades with Carbon Fiber Composite and Ply Resuction Ratio. The Journal of Aerospace System Engineering, 12(2), 66-75. DOI: 10.20910/JASE.2018.12.2.66
  4. M. N. Rizai & J. E. Bernard. (1987). An Efficient Method to Predict the Effect of Design Modifications. Journal of Mechanisms, Transmissions, and Automation in Design, ASME, 109(3), 377-384. DOI:10.1115/1.3258806
  5. SIEMENS. (2014). Design sensitivity and Optimization User's Guide, Siemens PLM Software in NX/NASTRAN user manual, p.151
  6. KIMM. (1991). Sensitivity analysis for optimal structural design, Gyeonggi : Science and Technology Ministry,
  7. D. J. Inman. (2015). Engineering Vibration. 4rd-ed (J. H. Hwang, G. B. Lee, T. G. Jung, B. D. Lim, C. W. Ahn, Trans), Pearson, Korea, (Original work published in 2013), pp. 199-217
  8. Ito Yochi. (1994). Knowledge of mobile cranes. Kajima Institute Publish Co, Ltd, Japan, p101-102
  9. KISTI, (2017). Semiconductor measurement/inspection equipment Technology Trends. ITFIND, http://www.itfind.or.kr/
  10. M. S. Koh. S. K. Kwon & S. Lee. (2015). A Study for the Dynamic Characteristics and Correlation with Test Result of Gantry Robot based on Finite Element Analysis. Journal of Digital Convergence 13(1), 269-274. DOI: 10.14400/jdc.2015.13.1.269
  11. D. J. Inman. (2012). Engineering Vibration. 3rd-ed, (J. H. Hwang, G. B. Lee, T. G. Jung, B. D. Lim, C. W. Ahn, Trans), Pearson, Korea, (Original work published in 2007) p. 333.
  12. C. N. Kim. (2019). Weight reduction of XY stage structure using sensitivity analysis, Unpublished master's thesis, Hoseo University, Asan, Korea
  13. O. Kolditz. (2002). Finite Difference Method. In: Computational Methods in Environmental Fluid Mechanics. Springer, Berlin, pp97-127
  14. Y. C. Yoon. (2008). Materials using MLS Finite Difference Method, The Computational structural Engineering Institute, 21(1), pp 2-7
  15. Y. D. Ha, T. U. Byun & S. H. Choy. (2014). Density-based Topology Design Optimization of Piezoelectric Crystal Resonators. COSEIK. J. Comput. Stuct. Eng., 27(2), 63-70.