DOI QR코드

DOI QR Code

Effect of Differential Thermal Drying Conditions on the Immunomodulatory Function of Ginger

  • Lee, Ji Su (Division of Bioengineering, Incheon National University) ;
  • Kim, Bomi (Department of Food Science and Technology and Center for Natural Sciences, Hoseo University) ;
  • Kim, Jae Hwan (Department of Agricultural Biotechnology, Seoul National University) ;
  • Jeong, Minju (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lim, Seokwon (Department of Food Science and Technology and Center for Natural Sciences, Hoseo University) ;
  • Byun, Sanguine (Division of Bioengineering, Incheon National University)
  • 투고 : 2019.05.29
  • 심사 : 2019.06.28
  • 발행 : 2019.07.28

초록

Thermal drying is a common process used in the food industry for the modification of agricultural products. However, while various studies have investigated the alteration in physiochemical properties and chemical composition after drying, research focusing on the relationship between different dehydration conditions and bioactivity is scarce. In the current study, we prepared dried ginger under nine different conditions by varying the processing time and temperature and compared their immunomodulatory effects. Interestingly, depending on the drying condition, there were significant differences in the immunestimulating activity of the dried ginger samples. Gingers processed at $50^{\circ}C$ 1h displayed the strongest activation of macrophages measured by $TNF-{\alpha}$ and IL-6 levels, whereas, freezedried or $70^{\circ}C$- and $90^{\circ}C$-dried ginger showed little effect. Similar results were recapitulated in primary bone marrow-derived macrophages, further confirming that different dehydration conditions can cause significant differences in the immune-stimulating activity of ginger. Induction of ERK, p38, and JNK signaling was found to be the major underlying molecular mechanism responsible for the immunomodulatory effect of ginger. These results highlight the potential to improve the bioactivity of functional foods by selectively controlling processing conditions.

키워드

참고문헌

  1. Escudero-Lopez B, Cerrillo I, Gil-Izquierdo A, Hornero-Mendez D, Herrero-Martin G, Berna G, et al. 2016. Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. Int. J. Food. Sci. Nutr. 67: 779-788. https://doi.org/10.1080/09637486.2016.1204428
  2. Jorge A, Almeida DM, Canteri MHG, Sequinel T, Kubaski ET, Tebcherani SM, et al. 2014. Evaluation of the chemical composition and colour in long-life tomatoes (Lycopersicon esculentum Mill) dehydrated by combined drying methods. Int. J. Food Sci. Technol. 49: 2001-2007. https://doi.org/10.1111/ijfs.12501
  3. Sharma KD, Karki S, Thakur NS, Attri S. 2012. Chemical composition, functional properties and processing of carrot-a review. J. Food Sci. Technol. 49: 22-32. https://doi.org/10.1007/s13197-011-0310-7
  4. Price KR, Casuscelli F, Colquhoun IJ, Rhodes MJC. 1998. Composition and content of flavonol glycosides in broccoli florets (Brassica olearacea) and their fate during cooking. J. Sci. Food Agric. 77: 468-472. https://doi.org/10.1002/(SICI)1097-0010(199808)77:4<468::AID-JSFA66>3.0.CO;2-B
  5. Byun S, Shin SH, Park J, Lim S, Lee E, Lee C, et al. 2016. Sulforaphene suppresses growth of colon cancer-derived tumors via induction of glutathione depletion and microtubule depolymerization. Mol. Nutr. Food Res. 60: 1068-1078. https://doi.org/10.1002/mnfr.201501011
  6. Van Eylen D, Oey I, Hendrickx M, Van Loey A. 2007. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. J. Agric. Food Chem. 55: 2163-2170. https://doi.org/10.1021/jf062630b
  7. Ali BH, Blunden G, Tanira MO, Nemmar A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem. Toxicol. 46: 409-420. https://doi.org/10.1016/j.fct.2007.09.085
  8. Byun S, Lim S, Mun JY, Kim KH, Ramadhar TR, Farrand L, et al. 2015. Identification of a Dual Inhibitor of Janus Kinase 2 (JAK2) and p70 Ribosomal S6 Kinase1 (S6K1) Pathways. J. Biol. Chem. 290: 23553-23562. https://doi.org/10.1074/jbc.M115.662445
  9. Abuajah CI, Ogbonna AC, Osuji CM. 2015. Functional components and medicinal properties of food: a review. J. Food Sci. Technol. 52: 2522-2529. https://doi.org/10.1007/s13197-014-1396-5
  10. Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA. 2015. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 132: 378-396. https://doi.org/10.1016/j.carbpol.2015.05.079
  11. Wang C-Z, Qi L-W, Yuan C-S. 2015. Cancer chemoprevention effects of ginger and its active constituents: potential for new drug discovery. Am. J. Chin. Med. 43: 1351-1363. https://doi.org/10.1142/S0192415X15500767
  12. Azam F, Amer AM, Abulifa AR, Elzwawi MM. 2014. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer's drugs: a computational investigation. Drug Des., Dev. Ther. 8: 2045-2059.
  13. Backon J. 1991. Ginger in preventing nausea and vomiting of pregnancy: a caveat due to its thromboxane synthetase activity and effect on testosterone binding. Eur. J. Obstet. Gynecol. Reprod. Biol. 42: 163-164. https://doi.org/10.1016/0028-2243(91)90178-N
  14. Butt MS, Sultan MT. 2011. Ginger and its health claims: molecular aspects. Crit. Rev. Food Sci. Nutr. 51: 383-393. https://doi.org/10.1080/10408391003624848
  15. Jafarzadeh A, Nemati M. 2018. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J. Neuroimmunol. 324:54-75. https://doi.org/10.1016/j.jneuroim.2018.09.003
  16. Li Y, Tran VH, Duke CC, Roufogalis BD. 2012. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: a brief review. Evid. Based Complement. Alternat. Med. 2012:516870.
  17. Nicoll R, Henein MY. 2009. Ginger (Zingiber officinale Roscoe): a hot remedy for cardiovascular disease? Int. J. Cardiol. 131: 408-409. https://doi.org/10.1016/j.ijcard.2007.07.107
  18. Shukla Y, Singh M. 2007. Cancer preventive properties of ginger: a brief review. Food Chem. Toxicol. 45: 683-690. https://doi.org/10.1016/j.fct.2006.11.002
  19. Zeng GF, Zhang ZY, Lu L, Xiao DQ, Zong SH, He JM. 2013. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res. 16: 124-133. https://doi.org/10.1089/rej.2012.1389
  20. Zheng W, Wang SY. 2001. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 49: 5165-5170. https://doi.org/10.1021/jf010697n
  21. Shakya SR. 2015. Medicinal uses of ginger (Zingiber officinale Roscoe) improves growth and enhances immunity in aquaculture. Int. J. Chem. Stud. 3: 83-87.
  22. Dhama K, Latheef SK, Mani S, Samad HA, Karthik K, Tiwari R, et al. 2015. Multiple beneficial applications and modes of action of herbs in poultry health and production-A review. Int. J. Phamacol. 11: 152-176.
  23. Bartley JP, Jacobs AL. 2000. Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). J. Sci. Food Agric. 80: 209-215. https://doi.org/10.1002/(SICI)1097-0010(20000115)80:2<209::AID-JSFA516>3.0.CO;2-8
  24. An K, Zhao D, Wang Z, Wu J, Xu Y, Xiao G. 2016. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 197: 1292-1300. https://doi.org/10.1016/j.foodchem.2015.11.033
  25. Gumusay OA, Borazan AA, Ercal N, Demirkol O. 2015. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 173: 156-162. https://doi.org/10.1016/j.foodchem.2014.09.162
  26. Lapenna A, De Palma M, Lewis CE. 2018. Perivascular macrophages in health and disease. Nat. Rev. Immunol. 18: 689-702. https://doi.org/10.1038/s41577-018-0056-9
  27. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S-A, Mardani F, et al. 2018. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233: 6425-6440.
  28. Bedoret D, Wallemacq H, Marichal T, Desmet C, Calvo FQ, Henry E, et al. 2009. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 119: 3723-3738. https://doi.org/10.1172/JCI39717
  29. Wang M, Fijak M, Hossain H, Markmann M, Nusing RM, Lochnit G, et al. 2017. Characterization of the micro-environment of the testis that shapes the phenotype and function of testicular macrophages. J. Immunol. 198: 4327-4340. https://doi.org/10.4049/jimmunol.1700162
  30. Schwandt T, Schumak B, Gielen GH, Jungerkes F, Schmidbauer P, Klocke K, et al. 2012. Expression of type I interferon by splenic macrophages suppresses adaptive immunity during sepsis. EMBO J. 31: 201-213. https://doi.org/10.1038/emboj.2011.380
  31. Ruparelia N, Godec J, Lee R, Chai JT, Dall'Armellina E, McAndrew D, et al. 2015. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur. Heart J. 36: 1923-1934. https://doi.org/10.1093/eurheartj/ehv195
  32. Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, et al. 2009. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J. Am. Coll. Cardiol. 54: 130-138. https://doi.org/10.1016/j.jacc.2009.04.021
  33. Kurihara T, Warr G, Loy J, Bravo R. 1997. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 186: 1757-1762. https://doi.org/10.1084/jem.186.10.1757
  34. Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314-1318. https://doi.org/10.1126/science.1110647
  35. Genard G, Lucas S, Michiels C. 2017. Reprogramming of tumor-associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front. Immunol. 8:828. https://doi.org/10.3389/fimmu.2017.00828
  36. Sangwan A, Kawatra A, Sehgal S. 2014. Nutritional composition of ginger powder prepared using various drying methods. J. Food Sci. Technol. 51: 2260-2262. https://doi.org/10.1007/s13197-012-0703-2
  37. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A. 2018. Formation of 6-, 8- and 10-shogaol in ginger through application of different drying methods: altered antioxidant and antimicrobial activity. Molecules 23 (pii): E1646. https://doi.org/10.3390/molecules23071646
  38. Martinez FO, Sica A, Mantovani A, Locati M. 2008. Macrophage activation and polarization. Front. Biosci. 13: 453-461. https://doi.org/10.2741/2692
  39. Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496: 445-455. https://doi.org/10.1038/nature12034
  40. Mosser DM, Edwards JP. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8: 958-969. https://doi.org/10.1038/nri2448
  41. Rao KM. 2001. MAP kinase activation in macrophages. J. Leukocyte. Biol. 69: 3-10.
  42. Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. 2016. Mitogen-activated protein kinases and mitogen kinase phosphatase 1: a critical interplay in macrophage biology. Front. Mol. Biosci. 3: 28.
  43. Campbell J, Ciesielski CJ, Hunt AE, Horwood NJ, Beech JT, Hayes LA, et al. 2004. A novel mechanism for TNF-alpha regulation by p38 MAPK: involvement of NF-kappa B with implications for therapy in rheumatoid arthritis. J. Immunol. 173: 6928-6937. https://doi.org/10.4049/jimmunol.173.11.6928
  44. Jung MY, Lee MK, Park HJ, Oh EB, Shin JY, Park JS et al, 2017. Heat-induced conversion of gingerols to shogaols in ginger as affected by heat type (dry or moist heat), sample type (fresh or dried), temperature and time. Food Sci. Biotechnol. 27: 687-693. https://doi.org/10.1007/s10068-017-0301-1

피인용 문헌

  1. Research progress on Cordyceps militaris polysaccharides vol.45, 2019, https://doi.org/10.1016/j.fbio.2021.101503