참고문헌
- Contesini FJ, Lopes DB, Macedo GA, da Graca Nascimento M, de Oliveira Carvalho P. 2010. Aspergillus sp. lipase: potential biocatalyst for industrial use. J. Mol. Catal. B-Enzym. 67: 163-171. https://doi.org/10.1016/j.molcatb.2010.07.021
- Shu Z Y, Yang J K, Huang Y, Yan Y J. 2007. Resources and current state of lipases used in biodiesel production. Hubei Agric. Sci. 6: 64.
- Fojan P, Jonson PH, Petersen MTN, Petersen SB. 2000. What distinguishes an esterase from a lipase: A novel structural approach. Biochimie 82: 1033-1041. https://doi.org/10.1016/S0300-9084(00)01188-3
- Winkler FK, D'Arcy A, Hunziker W. 1990. Structure of human pancreatic lipase. Nature 343: 771-774. https://doi.org/10.1038/343771a0
- Zheng YY, Guo XH, Song NN, Li DC. 2011. Thermophilic lipase from Thermomyces lanuginosus : Gene cloning, expression and characterization. J. Mol. Catal. B Enzym. 69: 127-132. https://doi.org/10.1016/j.molcatb.2011.01.006
- Kohno M, Enatsu M, Funatsu J, Yoshiizumi M, Kugimiya W. 2001. Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation. J. Biotechnol. 87: 203-210. https://doi.org/10.1016/S0168-1656(01)00243-7
- Jaeger KE, Ransac S, Dijkstra BW, Colson C, Van Heuvel M, Misset O. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63. https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
- Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, et al. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36: 1251-1275. https://doi.org/10.1111/j.1348-0421.1992.tb02129.x
- Yang W, He Y, Xu L, Zhang H, Yan Y. 2016. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J. Mol. Catal. B Enzym. 126: 76-89. https://doi.org/10.1016/j.molcatb.2016.02.005
- Ungcharoenwiwat P, H-Kittikun A. 2015. Purification and characterization of lipase from Burkholderia sp. EQ3 isolated from wastewater from a canned fish factory and its application for the synthesis of wax esters. J. Mol. Catal. B Enzym. 115: 96-104. https://doi.org/10.1016/j.molcatb.2015.02.005
- Xie C, Wu B, Qin S, He B. 2016. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol. Bioprocess Biosyst. Eng. 39: 59-66. https://doi.org/10.1007/s00449-015-1489-1
-
Ling XM, Wang XY, Ma P, Yang Y, Qin JM, Zhang XJ, et al. 2016. Covalent immobilization of penicillin G acylase onto
$Fe_3O_4@$ chitosan magnetic nanoparticles. J. Microbiol. Biotechnol. 26: 829-836. https://doi.org/10.4014/jmb.1511.11052 - Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW. 2015. Preparation Fe3O4@ chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int. J. Biol. Macromol. 75: 44-50. https://doi.org/10.1016/j.ijbiomac.2015.01.020
- Xu M Q, Wang S S , Li L N,Gao J,Zhang Y W. 2018. Combined cross-linked enzyme aggregates as biocatalysts. Catalysts 8: 460. https://doi.org/10.3390/catal8100460
- Pencreac'h G, Baratti JC. 1997. Activity of Pseudomonas cepacia lipase in organic media is greatly enhanced after immobilization on a polypropylene support. Appl. Microbiol. Biotechnol. 47: 630-635. https://doi.org/10.1007/s002530050986
- Gupta N, Rathi P, Gupta R. 2002. Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal. Biochem. 311: 98-99. https://doi.org/10.1016/S0003-2697(02)00379-2
- Singh R, Gupta N, Goswami VK, Gupta R. 2006. A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biotechnol. 70: 679-682. https://doi.org/10.1007/s00253-005-0138-z
- Cao Y, Zhuang Y, Yao C, Wu B, He B. 2012. Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R, S)-1-phenylethanol. Biochem. Eng. J. 64: 55-60. https://doi.org/10.1016/j.bej.2012.03.004
- Hagedorn C, Gould WD, Bardinelli TR, Gustavson DR. 1987. A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil. Appl. Environl Microbiol. 53: 2265-2268. https://doi.org/10.1128/AEM.53.9.2265-2268.1987
- Chakraborty K, Paulraj R. 2009. Purification and biochemical characterization of an extracellular lipase from Pseudomonas fluorescens MTCC 2421. J. Agric. Food Chem. 57: 3859. https://doi.org/10.1021/jf803797m
- Park DS, Oh HW, Heo SY, Jeong WJ, Shin DH, Bae KS, et al. 2007. Characterization of an extracellular lipase in Burkholderia sp. HY-10 isolated from a longicorn beetle. J. Microbiol. 45: 409.
- Wang HK, Liu RJ, Lu FP, Wei Q, Jing S, Ma HJ. 2009. A novel alkaline and low-temperature lipase of Burkholderia cepacia isolated from Bohai in China for detergent formulation. Ann. Microbiol. 59: 105-110. https://doi.org/10.1007/BF03175606
- Chaiyaso T, Seesuriyachan P, Zimmermann W, Hkittikun A. 2012. Purification and characterization of lipase from newly isolated Burkholderia multivorans PSU-AH130 and its application for biodiesel production. Ann. Microbiol. 62: 1615-1624. https://doi.org/10.1007/s13213-011-0418-z
- Lu Y, Lu F, Wang X, Bie X, Sun H, Wuyundalai, et al. 2009. Identification of bacteria producing a thermophilic lipase with positional non-specificity and characterization of the lipase. Ann. Microbiol. 59: 565-571. https://doi.org/10.1007/BF03175147
- Ji Q, Xiao S, BH Liu X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J. Mol. Catal. B Enzym. 66: 264-269. https://doi.org/10.1016/j.molcatb.2010.06.001
- Patel V, Nambiar S, Madamwar D. 2014. An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment. Process Biochem. 49: 1673-1681. https://doi.org/10.1016/j.procbio.2014.06.007
- Aguilar C, Bertani I, Venturi V. 2003. Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl. Environ. Microbiol. 69: 1739-1747. https://doi.org/10.1128/AEM.69.3.1739-1747.2003
- Dandavate V, Jinjala J, Keharia H, Madamwar D. 2009. Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour. Technol. 100: 3374-3381. https://doi.org/10.1016/j.biortech.2009.02.011
- Rahman RN, Baharum SN, Basri M, Salleh AB. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem. 341: 267-274. https://doi.org/10.1016/j.ab.2005.03.006
- Snellman EA, Sullivan ER, Colwell RR. 2002. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur. J. Biochem. 269: 5771-5779. https://doi.org/10.1046/j.1432-1033.2002.03235.x
- Yu N, Yang Jc, Yin Gt, Li Rs, Zou Wt, He C. 2018. Identification and characterization of a novel esterase from Thauera sp. Biotechnol. Appl. Biochem. 65: 748-755. https://doi.org/10.1002/bab.1659
- Ai L, Huang Y, Wang C. 2018. Purification and characterization of halophilic lipase of Chromohalobacter sp. from ancient salt well. J. Basic Microbiol. 58: 647-657. https://doi.org/10.1002/jobm.201800116
- Wang Z, Lv P, Luo W, Yuan Z, He D. 2016. Expression in Pichia pastoris and characterization of Rhizomucor miehei lipases containing a new propeptide region. J. f Gen. Appl. Microbiol. 62: 25-30. https://doi.org/10.2323/jgam.62.25
- Bakir ZB, Metin K. 2016. Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134. J. Microbiol. Biotechnol. 26: 1087-1097. https://doi.org/10.4014/jmb.1512.12056
- Jing Z, Yanjing L, Yan Q, Naikun S, Yi L, Ge L, et al. 2018. Optimization of a molasses based fermentation medium for lipases from Burkholderia sp. Bps1 based on response surface methodology. Food Sci. Technol. Res. 24: 757-765. https://doi.org/10.3136/fstr.24.757
- Shu ZY, Wu JG, Cheng LX, Chen D, Jiang YM, Li X, et al. 2012. Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Appl. Biochem. Biotechnol. 166: 536-548. https://doi.org/10.1007/s12010-011-9446-1
- Lee D, Koh Y, Kim K, Kim B, Choi H, Kim D, et al. 2005. Isolation and characterization of a thermophilic lipase from bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 13: 519-530.
- Tang L, Xia L. 2005. Purification and partial characterization of a lipase from Bacillus coagulans ZJU318. Appl. Biochem. Biotechnol. 125: 139-146. https://doi.org/10.1385/ABAB:125:2:139
- Ogino H, Watanabe F, Yamada M, Nakagawa S, Hirose T, Noguchi A, et al. 1999. Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J. Biosci. Bioeng. 87: 61-68. https://doi.org/10.1016/S1389-1723(99)80009-7
- Shu ZY, Lin RF, Jiang H, Zhang YF, Wang MZ, Huang JZ. 2009. A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere. J. Biosci. Bioeng. 107: 658-661. https://doi.org/10.1016/j.jbiosc.2009.01.011