DOI QR코드

DOI QR Code

Purification and risk assessment of Bacillus thuringiensis Vip3Aa protein against Apis mellifera

Bacillus thuringiensis 유래 Vip3Aa 단백질 순수분리 및 꿀벌 (Apis mellifera)에 대한 위해성평가

  • 정영준 (국립생태원 조사안전연구본부 생태안전연구실) ;
  • 유수향 (국립생태원 조사안전연구본부 생태안전연구실) ;
  • 이중로 (국립생태원 조사안전연구본부 생태안전연구실)
  • Received : 2019.11.14
  • Accepted : 2019.11.26
  • Published : 2019.12.31

Abstract

Most insect-resistant LMOs have been produced by applying Cry and Vip3Aa proteins. Vip3Aa protein is activated during the vegetative stage of Bacillus thuringensis (Bt) and the inhibitory activity of the Vip3Aa protein against pathogenic attacks from lepidopteran insect species is well known. However, a risk assessment of the Vip3Aa protein compared to the Cry protein has not been conducted in South Korea. This study demonstrates a possible risk assessment method for Vip3Aa protein against honeybees (Apis mellifera). For the risk assessment of the protein, we purified the recombinant Vip3Aa protein in Escherichia coli. The survival rate and symptoms of general intoxication of 4 months honeybees were measured after Vip3Aa exposure. These results indicated that there was no significant difference in the survival rate and the symptom between Vip3Aa and the control buffer. In this study, we established standard methods of Vip3Aa protein purification and oral adult toxicity test using A. mellifera as an LMO risk assessment technique for preserving the natural ecosystem of South Korea.

본 연구는 LMO 유전산물의 위해성평가를 위해 바실러스로부터 증폭된 Vip3Aa 유전자를 이용하여 대장균에서 단백질 순수분리 하였으며, MALDI-TOP 분석법을 통해 기존의 알려진 살충성 Vip3Aa 단백질과 동등한 단백질임을 증명하였다. 순수 분리한 Vip3Aa 단백질을 이용하여 꿀벌 과독성 급성섭식독성평가를 수행하였다. 그 결과 무처리군, Hepes buffer, Vip3Aa 단백질 처리군 모두 치사 및 일반 중독증상을 보이는 개체는 발견되지 않았다. 이 결과를 통해 Vip3Aa 단백질은 꿀벌에 위해성을 나타내지 않는다는 결론을 얻을 수 있었다. 본 연구 결과는 향후 국내 LMO 유전자 산물 위해성평가에 유용하게 활용될 것이라 사료된다.

Keywords

References

  1. Ali MI and RG Luttrell. 2011. Susceptibility of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) to Vip3A insecticidal protein expressed in VipCotTM cotton. J. Invertebr. Pathol. 108:76-84. https://doi.org/10.1016/j.jip.2011.06.013
  2. Baek HJ, SI Sohn, MR Cho, GS Lee, YJ Oh, JS Park, KJ Lee, SD Oh, SC Suh and TH Ryu. 2010. Development of protocol for analyzing pollinator insect-mediated gene transfer from gm crop. Korean J. Int. Agric. 22:293-297.
  3. Bergamasco VB, DR Mendes, OA Fernandes, JA Desiderio and MV Lemos. 2013. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J. Invertebr. Pathol. 112:152-158. https://doi.org/10.1016/j.jip.2012.11.011
  4. Bravo A, SS Gill and M Soberon. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:42-435.
  5. CERA. 2012. A Review of the Environmental Safety of Vip3Aa. Center for Environmental Risk Assessment. International Service for the Acquisition of Agri-biothch Applications (ISAAA). http://isaaa.org.
  6. Chakroun M, N Banyuls, Y Bel, B Escriche and J Ferre. 2016. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic. Microbiol. Mol. Biol. Rev. 80:329-350. https://doi.org/10.1128/MMBR.00060-15
  7. Donovan WP, JC Donovan and JT Engleman. 2001. Gene knockout demonstrates that vip3a contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J. Invertebr. Pathol. 78:45-51. https://doi.org/10.1006/jipa.2001.5037
  8. Donovan WP, JT Engleman, JC Donovan, JA Baum, GJ Bunkers, DJ Chi, WP Clinton, L English, GR Heck, OM Ilagan, KC Krasomil-Osterfeld, JW Pitkin, JK Roberts and MR Walters. 2006. Discovery and characterization of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Appl. Microbiol. Biotechnol. 72:713-719. https://doi.org/10.1007/s00253-006-0332-7
  9. Estruch JJ, GW Warren, MA Mullins, GJ Nye, JA Craig and MG Koziel. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93:5389-5394. https://doi.org/10.1073/pnas.93.11.5389
  10. Hilbeck A. 2001. Implications of transgenic, insecticidal plants for insect and plant biodiversity. Perspect. Plant Ecol. Evol. Syst. 4:43-61. https://doi.org/10.1078/1433-8319-00014
  11. Hutchison WD, EC Burkness, PD Mitchell, RD Moon, TW Leslie, SJ Fleischer, M Abrahamson, KL Hamilton, KL Steffey, ME Gray, RL Hellmich, LV Kaster, TE Hunt, RJ Wright, K Pecinovsky, TL Rabaey, BR Flood and ES Raun. 2010. Area wide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222-225. https://doi.org/10.1126/science.1190242
  12. James C. 2015. 20th anniversary of the global commercialization of biotech crops (1996 to 2015) and biotech crop highlights in 2015. ISAAA Brief 51:2-3.
  13. Kim BS, YJ Yang, YK Park, MH Jeong, AS You, KH Park and YJ Ahn. 2009. Risk assessment of fipronil on honeybee (Apis mellifera). Korean J. Pestic. Sci. 13:39-44.
  14. Lee B, CG Kim, JY Park, H Yi, KW Park, WK Jeong, JH An, KH Cho and HM Kim. 2007. Survay of herbicide resistant oilseed rapes around the basin of rivers in Incheon harbor area. Korean J. Weed Sci. 27:29-35.
  15. Lee B, JH Kim, SI Sohn, SJ Kweon, KW Park, YS Chung and SM Lee. 2015. Influence of insect pollinators on gene transfer from GM to nonGM soybeans. Korean J. Agric. Sci. 42:159-165. https://doi.org/10.7744/cnujas.2015.42.3.159
  16. Lemes ARN, CS Figueiredo, I Sebastiao, L Marques da Silva, R da Costa Alves, HAA de Siqueira, MVF Lemos, OA Fernandes and JA Desiderio. 2017. Cry1Ac and Vip3Aa proteins from Bacillus thuringiensis targeting Cry toxin resistance in Diatraea flavipennella and Elasmopalpus lignosellus from sugarcane. PeerJ 5:2866.
  17. Levine TJ, SL Bachman, PM Jenson, PD Mueller, GM Uffman, JP Meng, C Song, ZK B Richards and MH Beevers. 2015. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. Environ. Toxicol. Chem. 35:287-294. https://doi.org/10.1002/etc.3075
  18. Lim HS, YJ Jung, IR Kim, J Kim, S Ryu, B Kim, JR Lee and W Choi. 2017. Acute oral toxicity of dsRNA to honeybee, Apis mellifera. Korean J. Environ. Agric. 36:241-248. https://doi.org/10.5338/KJEA.2017.36.4.36
  19. Milne R, Y Liu, D Gauthier and K Frankenhuyzen. 2008. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). J. Invertebr. Pathol. 99:166-172. https://doi.org/10.1016/j.jip.2008.05.002
  20. Palma L, D Munoz, C Berry, J Murillo and P Caballero. 2014. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 6:3296-3325. https://doi.org/10.3390/toxins6123296
  21. Park KW, CK Kim, R Lee, DY Kim, JY Park, DI Kim, MC Kwon, H Yi and HM Kim. 2007. Monitoring of imported genetically modified crops in the cultivated fields in Korea. Korean J. Weed Sci. 27:318-324.
  22. Park SC, IR Kim, JE Hwang, JY Kim, YJ Jung, W Choi, Y Lee, MK Jang and JR Lee. 2019. Functional mechanisms underlying the antimicrobial activity of the Oryza sativa Trx-like protein. Int. J. Mol. Sci. 20:1413. https://doi.org/10.3390/ijms20061413
  23. Park T, H Choe, H Jeong, H Jang, J Kim and JJ Park. 2018. Comparison of insect fauna in transgenic and common rice paddy fields. Korean J. Environ. Biol. 36:488-497. https://doi.org/10.11626/KJEB.2018.36.4.488
  24. Patricia HM, SHR Carmen, VR Jeroen, E Baltasar and F Juan. 2013. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. J. Invertebr. Pathol. 113:78-81. https://doi.org/10.1016/j.jip.2013.02.001
  25. Quist D and IH Chapela. 2001. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414: 541-543. https://doi.org/10.1038/35107068
  26. Romeis J, D Bartsch, F Bigler, MP Candolfi, MMC Gielkens, SE Hartley, RL Hellmich, JE Huesing, PC Jepson, R Layton, H Quemada, A Raybould, RI Rose, J Schiemann, MK Sears, AM Shelton, J Sweet, Z Vaituzis and JD Wolt. 2008. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat. Biotechnol. 26:203-208. https://doi.org/10.1038/nbt1381
  27. Schnepf E, NV Crickmore, J van Rie, D Lereclus, J Baum, J Feitelson, DR Zeigler and DH Dean. 1988. Bacillus thuringiensis and its pesticidal Crystal proteins. Microbiol. Mol. Biol. Rev. 62:775-806. https://doi.org/10.1128/mmbr.62.3.775-806.1998
  28. Warren GW, MG Koziel, MA Mullins, GJ Nye, B Carr, NM Desai, K Kostichka, NB Duck and JJ Estruch. 1998. Auxiliary proteins for enhancing the insecticidal activity of pesticidal proteins. U.S. Patent No. 5,770,696. US Patent and Trademark Office. Washington, DC.