DOI QR코드

DOI QR Code

A Fusion Study on the Selection of Cyberknife Technique according to the Location of the Pulmonary Tumors

폐종양의 위치에 따른 사이버나이프 기법의 선택에 관한 융합적 연구

  • Kim, Gab-Jung (Division of Radiology, Songho University) ;
  • Kim, Jeong-Ho (Department of Radiation Oncology, Konyang University Hospital) ;
  • Bae, Seok-Hwan (Division of Radiological science, Konyang University) ;
  • Kim, Nak-Sang (Division of Radiology, Songho University) ;
  • Seo, Sun-Yeol (Department of Radiology, Daejeon Eulji Medical Center)
  • 김갑중 (송호대학교 방사선과) ;
  • 김정호 (건양대학교병원 방사선종양학과) ;
  • 배석환 (건양대학교 방사선학과) ;
  • 김낙상 (송호대학교 방사선과) ;
  • 서선열 (대전을지대학교병원 영상의학과)
  • Received : 2019.06.18
  • Accepted : 2019.07.20
  • Published : 2019.07.28

Abstract

Depending on the location of the lung tumor, the choice of treatment technique should be considered when treating the Cyberknife. The 4DCT images of 18 lung cancer patients were analyzed, and location error values were extracted through application program. The evaluation result was lower than the average position error only in the upper and the inner. These results suggest that the Vertebral tracking technique is effective when it is close to the pulmonary attachment or near the vertebral body, and the Synchrony technique is effective at other positions. In the future, we would like to study cyber knife treatment technique according to the position of the tumor as well as the volume of the lung and the respiratory cycle.

폐 종양의 위치에 따라 사이버나이프 치료 시 치료기법의 선택에 대해 고려해봐야 합니다. 폐암 환자 28명을 대상으로 18개 지점에 대해 4차원 단층촬영영상을 분석하였고, 응용프로그램을 통해 위치오차값을 추출하였다. 평가 결과 상부와 내측에서만 평균 위치오차값보다 낮았다. 이러한 결과를 통해 폐첨부에 가깝거나 척추체부에 가까운 경우 척추추적기법을 적용하는 것이 효율적이며, 이외의 위치에서는 호흡동조기법이 효율적이다. 이에 본연구를 기반으로 하여 향후 폐종양의 폐내 종양의 위치뿐만 아니라 폐활량에 따른 확장범위 및 환자마다 차이가 발생하는 호흡주기에 따라 사이버나이프 치료기법을 선택할 경우 효율적인 치료기법을 선택할 수 있도록 연구하고자 한다.

Keywords

OHHGBW_2019_v10n7_101_f0001.png 이미지

Fig. 1. Measurement points in T2 level

OHHGBW_2019_v10n7_101_f0002.png 이미지

Fig. 2. Measurement points in T6 level

OHHGBW_2019_v10n7_101_f0003.png 이미지

Fig. 3. Measurement points in T11 level

OHHGBW_2019_v10n7_101_f0004.png 이미지

Fig. 4. The console monitor of cyberknife

OHHGBW_2019_v10n7_101_f0005.png 이미지

Fig. 5. Result of motion on T2 level

OHHGBW_2019_v10n7_101_f0006.png 이미지

Fig. 6. Result of motion on T6 level

OHHGBW_2019_v10n7_101_f0007.png 이미지

Fig. 7. Result of motion on T11 level

OHHGBW_2019_v10n7_101_f0008.png 이미지

Fig. 8. The graph of PDV

OHHGBW_2019_v10n7_101_f0009.png 이미지

Fig. 9. The graph of measurement value and mean PDV

Table 1. Information of Subject

OHHGBW_2019_v10n7_101_t0001.png 이미지

Table 2. The data in column Mean value and Standard deviation of motion length[mm]

OHHGBW_2019_v10n7_101_t0002.png 이미지

References

  1. Y. B. Kim & C. O. Suh. (2008). Evolution of Radiotherapy: High-precision Radiotherapy, Journal of the Korean Medical Association, 51(7), 604-611. DOI : 10.5124/jkma.2008.51.7.604
  2. P. Giraud et al. (2011). Centers, Respiratory gating techniques for optimization of lung cancer radiotherapy, Journal of thoracic oncology, 6(12), 2058-2068. DOI : 10.1097/JTO.0b013e3182307ec2
  3. T. Biswas et al. (2012). SU‐E‐T‐422: Lung SBRT Using Cyberknife: Technique and Treatment Outcome, Medical physics, 39(6Part16), 3801-3802. DOI : 10.1118/1.4735511
  4. P. C. Gerszten et al. (2004). CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases, Neurosurgery, 55(1), 89-99. DOI : 10.1227/01.neu.0000440704.61013.34
  5. S. Y. Seo, M. S. Han, C. G. Kim, M. C. Jeon, Y, K, Kim & G. J. Kim. (2017). A study on the usefulness of a fusion model designed cloak shield to reduce the radiation exposure of the assistant during CT of severely injured patient. Journal of the Korea Convergence Society, 8(9) 211-216. DOI : 10.15207/JKCS.2017.8.9.211
  6. Y. J. Jeong & S. H. Kim. (2015). Useful evaluation of 3D target location correction by using Xsight spine tracking system in CyberKnife. Journal of Digital Convergence, 13(1), 331-339. DOI : 10.14400/JDC.2015.13.1.331
  7. B. H. Han et al. (2014). Evaluation of the Reproducibility of Radiation Output from Diagnostic X-ray Equipment(Standards Based on IEC 60601-2-54). Journal of Digital Convergence, 12(2), 555-561. DOI : 10.14400/JDC.2014.12.2.555
  8. K. Y. Lee, B. G. Jung, J. W. Kim, J. S. Park & B. H. Jeong, (2018). Simulation of the High Frequency Hyperthermia for Tumor Treatment. Journal of the Korea Convergence Society, 9(3), 257-263. DOI : 10.15207/JKCS.2018.9.3.257
  9. T. R. Mackie et al. (2003). Image guidance for precise conformal radiotherapy, International Journal of Radiation Oncology* Biology* Physics, 56(1), 89-105. DOI : 10.1016/S0360-3016(03)00090-7
  10. S. Webb. (1991). Optimization by simulated annealing of three-dimensional conformal treatment planning for radiation fields defined by a multileaf collimator, Physics in medicine and biology, 36(9), 1201. DOI : 10.1088/0031-9155/36/9/004
  11. L. Leksell. (1983). Stereotactic radiosurgery, Journal of Neurology, Neurosurgery & Psychiatry, 46(9), 797-803. DOI : 10.1136/jnnp.46.9.797
  12. J. Kim, M. Han, S. Yoo, K. Kim & J. H. Cho. (2015). Improvement of Beam-Quality Evaluation Method for Medical Linear Accelerator Using Magnetic Field, Journal of Magnetics, 20(2), 120-128. DOI : 10.4283/JMAG.2015.20.2.120
  13. K. H. Wong, S. Dieterich J. Tang & K. Cleary. (2007). Quantitative measurement of CyberKnife robotic arm steering, Technology in cancer research & treatment, 6(6), 589-594. DOI : 10.1177/153303460700600601
  14. M. Sarfaraz. (2007). CyberKnife${(R)}$ robotic arm stereotactic radiosurgery, Journal of the American College of Radiology, 4(8), 563-565. DOI : 10.1016/j.jacr.2007.05.003
  15. Y. S. Kim. (2008). Cyberknife Robotic Radiosurgery System for Cancer Treatment, Journal of the Korean Medical Association, 51(7), 630-637. DOI : 10.5124/jkma.2008.51.7.630
  16. T. S. Suh & I. H. Kim. (2008). Physical and Biological Background of Radiosurgery, Journal of the Korean Medical Association, 51(1), 16-26. DOI : 10.5124/jkma.2008.51.1.16
  17. A. Schweikard, G. Glosser, M. Boddulur, M. J. Murphy & J. R. Adler. (2000). Robotic motion compensation for respiratory movement during radiosurgery, Computer Aided Surgery, 5(4), 263-277. DOI : 10.3109/10929080009148894
  18. K. Kitamura et al. (2002). Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions, International Journal of Radiation Oncology* Biology* Physics, 53(5), 1117-1123. DOI : 10.1016/S0360-3016(02)02882-1
  19. A. Schweikard, H. Shiomi & J. Adler. (2004). Respiration tracking in radiosurgery, Medical physics, 31(10), 2738-2741. DOI : 10.1118/1.1774132
  20. W. Kilby, J. R. Dooley, G. Kuduvalli, S. Sayeh & C. R. Maurer Jr. (2010). The CyberKnife(R) robotic radiosurgery system in 2010, Technology in cancer research & treatment, 9(5), 433-452. DOI : 10.1177/153303461000900502
  21. M. Hoogeman, J. B. Prevost, J. Nuyttens, J. Poll, P. Levendag & B. Heijmen. (2009). Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files, International Journal of Radiation Oncology* Biology* Physics, 74(1), 297-303. DOI : 10.1016/j.ijrobp.2008.12.041
  22. C. Ozhasoglu et al. (2008). Synchrony-cyberknife respiratory compensation technology, Medical Dosimetry, 33(2), 117-123. DOI : 10.1016/j.meddos.2008.02.004
  23. R. Shirazi, P. M. Goldfarb, D. B. Fuller & H. Sanati. (2011). CyberKnife stereotactic body radiation therapy for palliation and local control in patients with advanced pancreatic cancer: A retrospective review, Journal of Clinical Oncology, 29(15_suppl), e14506-e14506. DOI : 10.1200/jco.2011.29.15_suppl.e14506
  24. J. M. Kuhnigk et al. (2005). New tools for computer assistance in thoracic CT. Part 1. Functional analysis of lungs, lung lobes, and bronchopulmonary segments, Radiographics, 25(2), 525-536. DOI : 10.1148/rg.252045070