DOI QR코드

DOI QR Code

4Effects of Turmeric (Curcuma longa L.) Supplementation on Creatinine and Hepatic Functional Enzyme Activities in Streptozotocin-induced Diabetic Rats

울금(Curcuma longa L.) 섭취가 당뇨성 흰쥐의 크레아티닌 및 간 기능 효소 활성에 미치는 영향

  • Oh, Da-Young (Department of Food Science and Technology, Pusan National University) ;
  • Lee, Young-Geun (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Dong-Seob (Department of Food Science and Technology, Pusan National University) ;
  • Chung, Hun-Sik (Department of Food Science and Technology, Pusan National University) ;
  • Kang, Dong-Soo (Department of Marine Bio Food Science, Chonnam National University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • Received : 2019.05.01
  • Accepted : 2019.06.12
  • Published : 2019.06.30

Abstract

The purpose of this study was to investigate the improvement effect of turmeric (Curcuma longa L.) on the hepatic functional enzyme and catalase activity of streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley (SD) male rats were divided into four groups (n=6), and fed experimental diets containing turmeric meal [basal diet+5% turmeric (BT), basal diet+STZ+5% turmeric (ST)], and control (basal diet, BD), BS groups (basal diet+STZ). Serum concentrations of creatinine and blood urea nitrogen (BUN) were significantly decreased (p<0.05) by 5% turmeric supplementation diet. The activities of akaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate transaminase (AST), alanine transaminase (ALT), amylase and lipase were decreased in the BD, BT and ST group than BS group. The catalase (CAT) activity was significantly increased (p<0.05) in turmeric supplementation diet (BT, ST group) than diabetic group (BS). Furthermore, the activities of amylase and lipase in the sera of turmeric diet group were significantly decreased (p<0.05). In vivo experiments with diabetic rats showed that ingestion of turmeric supplementation diet were effective in creatinine concentration, and hepatic functional enzyme activities.

Streptozotocin (STZ, 45 mg/kg body weight)으로 유도된 Sprague Dawley (SD)계 수컷 흰쥐에 5% 울금을 섭취시켰을 때, 혈청 크레아티닌(creatinine) 및 blood urea nitrogen (BUN)의 농도와 alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aminotransferase (AST, ALT), 카탈라아제(catalase), 아밀라아제(amylase) 및 리파아제(lipase) 활성에 미치는 영향을 알아보기 위해 본 실험을 수행한 결과, 기본식이를 급여시킨 대조군(control)인 정상군은 BD군, 기본식이 실험군에 5% 울금 급여군(BT군), 당뇨 유발 실험군(BS군)인 질환 모델 대조군(control-diabetic)과 질환 실험군(diabetic, BS군)에 5% 울금을 급여시킨 실험군(ST군)으로 나누었다. 흰쥐의 혈청 크레아티닌 및 BUN 농도와 ALP, AST 및 ALT 활성은 유사한 경향으로 5% 울금의 급여가 감소시킨 것으로 확인되었다. SD계 수컷 흰쥐의 혈청 LDH 활성은 BS군에서 유의적인 차이를 나타내며 높은 활성을 보였으나(p<0.05), 5% 울금의 급여가 감소 효과를 나타내었다(p<0.05). 카탈라아제 활성은 BS군에서 유의적으로 낮은 활성을 나타내었고, ST군에서 활성을 증가시켰다(p<0.05). 혈청 아밀라아제 및 리파아제의 활성은 5% 울금의 급여가 감소시킨 것으로 확인되었다. 본 연구 결과, SD계 수컷 흰쥐를 통한 in vivo 실험에서 5% 울금의 섭취가 당뇨, 내인성 항산화 효소 및 간 기능 개선에 효과가 있는 것으로 나타났다.

Keywords

HGOHBI_2019_v36n2_383_f0001.png 이미지

Fig. 1. Effects of turmeric (Curcuma longa L.) on serum alkaline phosphatase (ALP) activity of STZ-induced diabetic rats.

HGOHBI_2019_v36n2_383_f0002.png 이미지

Fig. 2. Effects of turmeric (Curcuma longa L.) on serum lactate dehydrogenase (LDH) activity of STZ-induced diabetic rats.

HGOHBI_2019_v36n2_383_f0003.png 이미지

Fig. 3. Effects of turmeric (Curcuma longa L.) on serum aspartate and alanine aminotransferase (AST and ALT) activity of STZ-induced diabetic rats.

HGOHBI_2019_v36n2_383_f0004.png 이미지

Fig. 4. Effects of turmeric (Curcuma longa L.) on serum catalase activity of STZ-induced diabetic rats.

HGOHBI_2019_v36n2_383_f0005.png 이미지

Fig. 5. Effects of turmeric (Curcuma longa L.) on amylase activity of STZ-induced diabetic rats.

HGOHBI_2019_v36n2_383_f0006.png 이미지

Fig. 6. Effects of turmeric (Curcuma longa L.) on serum lipase activity of STZ-induced diabetic rats.

Table 1. Compositions of experimental diet and groups

HGOHBI_2019_v36n2_383_t0001.png 이미지

Table 2. Effects of turmeric (Curcuma longa L.) on serum creatinine and BUN concentration of STZ-induced diabetic rats

HGOHBI_2019_v36n2_383_t0002.png 이미지

References

  1. C. A. C. Araujo, L. L. Leon, "Biological activities of Curcuma longa L", Mem. Inst. Oswaldo Cruz, Vol. 96, No. 5, pp. 723-728, (2001). https://doi.org/10.1590/S0074-02762001000500026
  2. S. Senan, D. Kizhakayil, T. E. Sheeja, B. Sasikumar, A. I. Bhat, V. A. Parthasarathy, "Novel polymorphic microsatellite markers from turmeric, Curcuma longa L. (Zingiberaceae)", Acta Bot. Croat., Vol. 72, No. 2, pp. 407-412, (2013). https://doi.org/10.2478/botcro-2013-0002
  3. H. S. Kim, "The Effects of Saururus chinensis baill extract administration on the blood glucose, electrolyte and lipid metabolism in STZ-induced hyperglycemic rats", J. Life Sci., Vol. 16, No. 6, pp. 911-918, (2006). https://doi.org/10.5352/JLS.2006.16.6.911
  4. H. S. Kim, S. H. Kim, H. S. Cheong, J. O. Kang, S. Y. Chung, "Effects of the feeding mixed oils with various levels of n-3 and n-6 polyunsaturated fatty acid on the lipid components and fatty acid metabolism of serum lipoprotein in hyperlipedemic rat", J. Korean Soc. Food Nutr., Vol. 22, No. 5, pp. 543-551, (1993).
  5. S. J. Lim, Y. R. Kim, "Effects of Benincasa hispida seeds intake on blood glucose and lipid levels in streptozotocin induced diabetic rats", Korean. J. Nutr., Vol. 37, No. 4, pp. 259-265, (2004).
  6. A. Dembinska-Kiec, O. Mykkanen, B. Kiec-Wilk, H. Mykkanen, "Antioxidant phytochemicals against type 2 diabetes", Br. J. Nutr., Vol. 99, No. E-S1, pp. ES109-ES117, (2008). https://doi.org/10.1017/S000711450896579X
  7. K. Kowalska, A. Olejnik, "Beneficial effects of cranberry in the prevention of obesity and related complications: Metabolic syndrome and diabetes-A review", J. Funct. Foods, Vol. 20, pp. 171-181, (2016). https://doi.org/10.1016/j.jff.2015.11.001
  8. K. G. M. M. Alberti, P. F. Zimmet, "Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation", Diabetic Med., Vol. 15, No. 7, pp. 539-553, (1998). https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
  9. D. Devendra, E. Liu, G. S. Eisenbarth, "Type 1 diabetes: recent developments", Br. Med. J., Vol. 328, No. 7442, pp. 750-754, (2004). https://doi.org/10.1136/bmj.328.7442.750
  10. H. E. Lebovitz, "Type 2 diabetes: an overview", Clin. Chem., Vol. 45, No. 8, pp. 1339-1345, (1999). https://doi.org/10.1093/clinchem/45.8.1339
  11. M. P. Stern, C. Gonzalez, B. D. Mitchell, E. Villalpando, S. M. Haffner, H. P. Hazuda, "Genetic and environmental determinants of type II diabetes in Mexico city and San Antonio", Diabetes, Vol. 41, No. 4, pp. 484-492, (1992). https://doi.org/10.2337/diab.41.4.484
  12. R. A. DeFronzo, "Pharmacologic therapy for type 2 diabetes mellitus", Ann. Intern. Med., Vol. 131, No. 4, pp. 281-303, (1999). https://doi.org/10.7326/0003-4819-131-4-199908170-00008
  13. H. Chahdoura, K. Adouni, A. Khlifi, I. Dridi, Z. Haouas, F. Neffati, G. Flamini, H. Mosbah, L. Achour, "Hepatoprotective effect of Opuntia microdasys (Lehm.) Pfeiff flowers against diabetes type II induced in rats", Biomed. Pharmacother., Vol. 94, pp. 79-87, (2017). https://doi.org/10.1016/j.biopha.2017.07.093
  14. P. C. Lekshmi, R. Arimboor, V. M. Nisha, A. N. Menon, K. G. Raghu, "In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme", J. Food Sci. Technol., Vol. 51, No. 12, pp. 3910-3917, (2014). https://doi.org/10.1007/s13197-013-0953-7
  15. B. Vozarova, N. Stefan, R. S. Lindsay, A. Saremi, R. E. Pratley, C. Bogardus, P. A. Tataranni, "High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes", Diabetes, Vol. 51, No. 6, pp. 1889-1895, (2002). https://doi.org/10.2337/diabetes.51.6.1889
  16. Z. Liu, Y. Hu, X. Yang, A. Tan, Y. Gao, X. Qin, Y. Liang, Z. Mo, T. Peng, "Combinative analysis of factors influence serum alanine aminotransferase activity in adult male population from southern China", Clin. Biochem., Vol. 45, No. 18, pp. 1683-1688, (2012). https://doi.org/10.1016/j.clinbiochem.2012.08.022
  17. C. S. Lai, S. N. Liao, M. L. Tsai, N. Kalyanam, M. Majeed, A. Majeed, C. T. Ho, M. H. Pan, "Calebin-A inhibits adipogenesis and hepatic steatosis in high-fat diet-induced obesity via activation of AMPK signaling", Mol. Nutr. Food Res., Vol. 59, No. 10, pp. 1883-1895, (2015). https://doi.org/10.1002/mnfr.201400809
  18. D. H. Jin, D. Y. Oh, D. S. Kang, H. S. Chung, D. S. Kim, Y. G. Lee, J. H. Seong, H. S. Kim, "Effects of krill (Euphausia superba) on free fatty acid and electrolyte concentrations in rats", J. Korea Oil Chem. Soc., Vol. 35, No. 1, pp. 186-193, (2018).
  19. J. S. Kim, C. S. Na, "Effect of rehmanniae radix and pear phenolic compound on the STZ-treated mice for induction of diabetes", J. Korean Soc. Food Sci. Nutr., Vol. 33, No. 1, pp. 66-71, (2004). https://doi.org/10.3746/jkfn.2004.33.1.066
  20. S. Sharma, S. K. Kulkarni, K. Chopra, "Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats", Clin. Exp. Pharmacol. Physiol., Vol. 33, No. 10, pp. 940-945, (2006). https://doi.org/10.1111/j.1440-1681.2006.04468.x
  21. S. Shrestha, P. Gyawali, R. Shrestha, B. Poudel, M. Sigdel, "Serum urea and creatinine in diabetic and non-diabetic subjects", J. Nepal Assoc. Med. Lab. Sci., Vol. 9, No. 1, pp. 11-12, (2008).
  22. W. E. Rutherford, J. Blondin, J. P. Miller, A. S. Greenwalt, J. D. Vavra, "Chronic progressive renal disease: rate of change of serum creatinine concentration", Kidney Int., Vol. 11, No. 1, pp. 62-70, (1977). https://doi.org/10.1038/ki.1977.8
  23. P. Palsamy, S. Subramanian, "Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocinnicotinamide induced experimental diabetic rats", Biomed. Pharmacother., Vol. 62, No. 9, pp. 598-605, (2008). https://doi.org/10.1016/j.biopha.2008.06.037
  24. A. R. Nunes, M. G. Alves, G. D. Tomas, V. R. Conde, A. C. Cristovao, P. I. Moreira, P. F. Oliveira, B. M. Silva, "Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats", Br. J. Nutr., Vol. 113, No. 5, pp. 832-842, (2015). https://doi.org/10.1017/S0007114514004395
  25. V. A. De La Pena, P. D. Dios, R. T. Sierra, "Relationship between lactate dehydrogenase activity in saliva and oral health status", Arch. Oral Biol., Vol. 52, No. 10, pp. 911-915, (2007). https://doi.org/10.1016/j.archoralbio.2007.04.008
  26. R. K. Schindhelm, M. Diamant, J. M. Dekker, M. E. Tushuizen, T. Teerlink, R. J. Heine, "Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease", Diabetes Metab. Res. Rev., Vol. 22, No. 6, pp. 437-443, (2006). https://doi.org/10.1002/dmrr.666
  27. L. Goth, J. W. Eaton, "Hereditary catalase deficiencies and increased risk of diabetes", Lancet, Vol. 356, No. 9244, pp. 1820-1821, (2000). https://doi.org/10.1016/S0140-6736(00)03238-4
  28. M. C. Vantyghem, S. Haye, M. Balduyck, C. Hober, P. M. Degand, J. Lefebvre, "Changes in serum amylase, lipase and leukocyte elastase during diabetic ketoacidosis and poorly controlled diabetes", Acta Diabetol., Vol. 36, No. 1-2, pp. 39-44, (1999). https://doi.org/10.1007/s005920050143
  29. O. C. Ohaeri, "Effect of garlic oil on the levels of various enzymes in the serum and tissue of streptozotocin diabetic rats", Biosci. Rep., Vol. 21, No. 1, pp. 19-24, (2001). https://doi.org/10.1023/A:1010425932561
  30. S. Kurooka, T. Kitamura, "Properties of serum lipase in patients with various pancreatic diseases", J. Biochem., Vol. 84, No. 6, pp. 1459-1466, (1978). https://doi.org/10.1093/oxfordjournals.jbchem.a132269
  31. X. Molero, F. Guarner, A. Salas, M. Mourelle, V. Puig, J. R. Malagelada, "Nitric oxide modulates pancreatic basal secretion and response to cerulein in the rat: effects in acute pancreatitis", Gastroenterology, Vol. 108, No. 6, pp. 1855-1862, (1995). https://doi.org/10.1016/0016-5085(95)90150-7
  32. C. Kong, L. Nimmo, T. Elatrozy, V. Anyaoku, C. Hughes, S. Robinson, W. Richmond, R. S. Elkeles, "Smoking is associated with increased hepatic lipase activity, insulin resistance, dyslipidaemia and early atherosclerosis in type 2 diabetes", Atherosclerosis, Vol. 156, No. 2, pp. 373-378, (2001). https://doi.org/10.1016/S0021-9150(00)00664-X

Cited by

  1. 녹두(Phaseolus aureus L.) 급여가 당뇨성 흰쥐의 BUN 및 간 기능 효소 활성에 미치는 영향 vol.29, pp.4, 2019, https://doi.org/10.5322/jesi.2020.29.4.351