DOI QR코드

DOI QR Code

Excluding molten fluoride salt from nuclear graphite by SiC/glassy carbon composite coating

  • He, Zhao (Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences) ;
  • Song, Jinliang (Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences) ;
  • Lian, Pengfei (Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences) ;
  • Zhang, Dongqing (Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences) ;
  • Liu, Zhanjun (Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences)
  • Received : 2018.09.23
  • Accepted : 2019.03.07
  • Published : 2019.06.25

Abstract

SiC coating and SiC/glassy carbon composite coating were prepared on IG-110 nuclear graphite (Toyo Tanso Co., Ltd., Japan) to strengthen its inertness to molten fluoride salt used in molten salt reactor (MSR). Two kinds of modified graphite were obtained and correspondingly named as IG-110-1 and IG-110-2, which referred to modified IG-110 with a single SiC coating and a SiC/glassy carbon composite coating, respectively. Both structure and property of modified graphite were carefully researched and contrasted with virgin IG-110. Results indicated that modified graphite presented better comprehensive properties such as more compact structure and higher resistance to molten salt infiltration. With the protection of coatings, the infiltration amounts of fluoride salt into modified graphite were much less than that into virgin IG-110 at the same circumstance. Especially, the infiltration amount of fluoride salt into IG-110-2 under 5 atm was merely 0.26 wt%, which was much less than that into virgin IG-110 under 1.5 atm (13.5 wt%) and the critical index proposed for nuclear graphite used in MSR (0.5 wt%). The SiC/glassy carbon composite coating gave rise to highest resistance to molten salt infiltration into IG-110-2, and thus demonstrated it could be a promising protective coating for nuclear graphite used in MSR.

Keywords

References

  1. T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Policy 36 (12) (2008) 4323-4330. https://doi.org/10.1016/j.enpol.2008.09.059
  2. M.S. Sohal, M.A. Ebner, P. Sabharwall, et al., Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties, 2010. Technical Report INL/EXT-10-18297.
  3. D.E. Holcomb, S.M. Cetiner, An Overview of Liquid-Fluoride-Salt Heat Transport Systems, Oak Ridge National Laboratory, USA, 2010. ORNL/TM-2010/156.
  4. E. Capelli, O. Bene-s, R.J.M. Konings, Thermodynamic assessment of the $LiF-NaF-BeF_2-ThF_4-UF_4$ system, J. Nucl. Mater. 449 (1-3) (2014) 111-121. https://doi.org/10.1016/j.jnucmat.2014.03.009
  5. X.H. An, J.H. Cheng, H.Q. Yin, et al., Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique, Int. J. Heat Mass Transf. 90 (2015) 872-877. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.042
  6. R.B. Briggs, Molten-Salt Reactor Program Progress Report, Oak Ridge National Laboratory, USA, 1961. ORNL-3122.
  7. M.W. Rosenthal, P.N. Haubenreich, R.B. Briggs, The Development Status of Molten-Salt Breeder Reactors, Oak Ridge National Laboratory, USA, 1972. ORNL-4812.
  8. R.B. Briggs, Molten-salt Reactor Program Semi Annual Progress Report, Oak Ridge National Laboratory, USA, 1964. ORNL-3708.
  9. H. Mccoy, R. Beatty, W. Cook, et al., New developments in materials for molten salt reactors, Nucl. Appl. Technol. 8 (2) (1970) 156-169. https://doi.org/10.13182/NT70-A28622
  10. X.J. He, J.L. Song, L. Xu, et al., Protection of nuclear graphite toward liquid fluoride salt by isotropic pyrolytic carbon coating, J. Nucl. Mater. 442 (1-3) (2013) 306-308. https://doi.org/10.1016/j.jnucmat.2013.09.015
  11. X.J. He, J.L. Song, J. Tan, et al., SiC coating: an alternative for the protection of nuclear graphite from liquid fluoride salt, J. Nucl. Mater. 448 (1-3) (2014) 1-3. https://doi.org/10.1016/j.jnucmat.2014.01.034
  12. R.B. Briggs, M.W. Rosenthal, P.N. Haubenreich, Molten Salt Reactor Program Semiannual Progress Report, Oak Ridge National Laboratory, USA, 1971. ORNL-4728.
  13. J.L. Song, Y.L. Zhao, X.J. He, et al., Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and $Xe^{135}$ penetration for molten salt breeder reactor, J. Nucl. Mater. 456 (2015) 33-40. https://doi.org/10.1016/j.jnucmat.2014.09.006
  14. Z. He, P.F. Lian, Y. Song, et al., Protecting nuclear graphite from liquid fluoride salt and oxidation by SiC coating derived from polycarbosilane, J. Eur. Ceram. Soc. 38 (2) (2018) 453-462. https://doi.org/10.1016/j.jeurceramsoc.2017.09.031
  15. V. Bernardet, S. Gomes, S. Delpeux, et al., Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit, J. Nucl. Mater. 384 (3) (2009) 292-302. https://doi.org/10.1016/j.jnucmat.2008.11.032
  16. S. Ueta, J. Sumita, T. Shibata, et al., R&D plan for development of oxidation-resistant graphite and investigation of oxidation behavior of SiC coated fuel particle to enhance safety of HTGR, Nucl. Eng. Des. 271 (2014) 309-313. https://doi.org/10.1016/j.nucengdes.2013.11.052
  17. Y.F. Gu, J.X. Liu, Y. Wang, et al., Corrosion behavior of TiC-SiC composite ceramics in molten FLiNaK salt, J. Eur. Ceram. Soc. 37 (7) (2017) 2575-2582. https://doi.org/10.1016/j.jeurceramsoc.2017.02.020
  18. X.M. Yang, M. Liu, Y.T. Gao, et al., Effect of oxygen on the corrosion of SiC in LiF-NaF-KF molten salt, Corros. Sci. 103 (2016) 165-172. https://doi.org/10.1016/j.corsci.2015.11.014
  19. Y.H. Yun, Y.H. Park, M.Y. Ahn, et al., CVR-SiC coating of graphite pebbles for fusion blanket application, Ceram. Int. 40 (1) (2014) 879-885. https://doi.org/10.1016/j.ceramint.2013.06.082
  20. Y. Lee, Y.H. Yun, Y.H. Park, et al., Surface coating of graphite pebbles for Korean HCCR TBM, Fusion Eng. Des. 89 (7-8) (2014) 1734-1738. https://doi.org/10.1016/j.fusengdes.2013.12.027
  21. T. Iseki, M. Ishida, H. Suzuki, Thermal shock behavior of SiC coatings for fusion reactor applications, J. Nucl. Sci. Technol. 19 (7) (1982) 587-592. https://doi.org/10.1080/18811248.1982.9734186
  22. R.B. Briggs, P.R. Kasten, Molten-salt Reactor Program Semiannual Progress Report, Oak Ridge National Laboratory, USA, 1963. ORNL-3419.
  23. J.J. Biernacki, G.P. Wotzak, Stoichiometry of the $C+SiO_2$ reaction, J. Am. Ceram. Soc. 72 (1) (1989) 122-129. https://doi.org/10.1111/j.1151-2916.1989.tb05964.x
  24. S. Dutta, Effects of various consolidation techniques on microstructure, strength, and reliability of alpha-SiC, Ceram. Trans. 2 (1989) 215-226. Silicon Carbide '287, printed in United States.
  25. X. Yang, Q. Huang, Z. Su, et al., Resistance to oxidation and ablation of SiC coating on graphite prepared by chemical vapor reaction, Corros. Sci. 75 (2013) 16-27. https://doi.org/10.1016/j.corsci.2013.05.009
  26. Y. Kim, C. Jang, E.-S. Kim, SiC coating on various nuclear-grade graphite substrates by chemical vapor reaction, J. Ceram. Process. Res. 15 (5) (2014) 294-297. https://doi.org/10.36410/JCPR.2014.15.5.294
  27. M.C. Huang, HsishengTeng, Urea impregnation to enhance porosity development of carbons prepared from phenol-formaldehyde resins, Carbon 40 (6) (2002) 955-958. https://doi.org/10.1016/S0008-6223(02)00068-4
  28. Z. He, P.F. Lian, Y. Song, et al., Improving molten fluoride salt and $Xe^{135}$ barrier property of nuclear graphite by phenolic resin impregnation process, J. Nucl. Mater. 499 (2018) 79-87. https://doi.org/10.1016/j.jnucmat.2017.11.019
  29. S.S. Tzeng, J.H. Pan, Densification of two-dimensional carbon/carbon composites by pitch impregnation, Mater. Sci. Eng. 316 (2001) 127-134. https://doi.org/10.1016/S0921-5093(01)01255-2
  30. Z.T. He, L.N. Gao, X. Wang, et al., Improvement of stacking order in graphite by molten fluoride salt infiltration, Carbon 72 (2014) 304-311. https://doi.org/10.1016/j.carbon.2014.02.010
  31. J.L. Song, Y.L. Zhao, J.P. Zhang, et al., Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and $Xe^{135}$ penetration for molten salt nuclear reactor, Carbon 79 (2014) 36-45. https://doi.org/10.1016/j.carbon.2014.07.022
  32. P.F. Lian, J.L. Song, Z.J. Liu, et al., Preparation of ultrafine-grain graphite by liquid dispersion technique for inhibiting the liquid fluoride salt infiltration, Carbon 102 (2016) 208-215. https://doi.org/10.1016/j.carbon.2016.02.018
  33. B. Vriesema, Aspects of Molten Fluorides as Heat Transfer Agents for Power Generation, University of Technology the Netherlands, Department of Mechanical Engineering, 1979.
  34. J.L. Song, Q.G. Guo, X.Q. Gao, et al., $Mo_2C$ intermediate layers for the wetting and infiltration of graphite foams by liquid copper, Carbon 49 (10) (2011) 3165-3170. https://doi.org/10.1016/j.carbon.2011.03.038
  35. K.S. Xiao, Q.G. Guo, Z.J. Liu, et al., Influence of fiber coating thickness on microstructure and mechanical properties of carbon fiber-reinforced zirconium diboride based composites, Ceram. Int. 40 (1) (2014) 1539-1544. https://doi.org/10.1016/j.ceramint.2013.07.040
  36. ASTM C695-91, Standard Test Method for Compressive Strength of Carbon and Graphite, 2010.
  37. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (3) (1970) 1126-1130. https://doi.org/10.1063/1.1674108
  38. Pimenta MA, G. Dresselhaus, M.S. Dresselhaus, et al., Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9 (11) (2007) 1276-1291. https://doi.org/10.1039/B613962K
  39. L. Nikiel, P.W. Jagodzinski, Raman-spectroscopic characterization of graphitesa reevaluation of spectra/structure correlation, Carbon 31 (8) (1993) 1313-1317. https://doi.org/10.1016/0008-6223(93)90091-N
  40. T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon 33 (11) (1995) 1561-1565. https://doi.org/10.1016/0008-6223(95)00117-V
  41. S. Chakraborty, D. Debnath, A.R. Mallick, et al., Microscopic, mechanical and thermal properties of spark plasma sintered $ZrB_2$ based composite containing polycarbosilane derived SiC, Int. J. Refract. Metals Hard Mater. 52 (2015) 176-182. https://doi.org/10.1016/j.ijrmhm.2015.06.010
  42. GB/T 21650.1-2008/ISO15901-1, Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 1: Mercury Porosimetry, 2005, p. 1.
  43. W.T. Zhang, B.L. Zhang, J.L. Song, et al., Microstructure and molten salt impregnation characteristics of a micro-fine grain graphite for use in molten salt reactors, N. Carbon Mater. 31 (6) (2016) 585-593. https://doi.org/10.1016/S1872-5805(16)60034-3

Cited by

  1. Protection of graphite from salt and gas permeation in molten salt reactors vol.534, 2019, https://doi.org/10.1016/j.jnucmat.2020.152119
  2. The laser-prepared SiC nanocoating: preparation, properties and high-temperature oxidation performance vol.8, pp.8, 2021, https://doi.org/10.1088/2053-1591/ac17ab