• Title/Summary/Keyword: Nuclear graphite

Search Result 128, Processing Time 0.034 seconds

Development of integrated waste management options for irradiated graphite

  • Wareing, Alan;Abrahamsen-Mills, Liam;Fowler, Linda;Grave, Michael;Jarvis, Richard;Metcalfe, Martin;Norris, Simon;Banford, Anthony William
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1010-1018
    • /
    • 2017
  • The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

Study on the Recycling of Nuclear Graphite after Micro-Oxidation

  • Liu, Juan;Wang, Chen;Dong, Limin;Liang, Tongxiang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.182-188
    • /
    • 2016
  • In this paper, a feasible strategy for the recycling of nuclear graphite is reported, based on the formation mechanism and the removal of carbon-14 by micro-oxidation. We investigated whether ground micro-oxidation graphite could be used as a filler to make new recycled graphite and which graphite/pitch coke ratio will give the recycled graphite outstanding properties (e.g., apparent density, flexural strength, compressive strength, and tensile strength). According to the existing properties of nuclear graphite, the ratio of graphite to pitch coke should not exceed 3. The recycled reactor graphite has been proven superior in density, strength, and thermal conductivity. The micro-oxidation process enhances the strength of the recycled graphite because there are more pores and unsmooth surfaces on the oxidized graphite particles, which is beneficial for the access of the pitch binder and leads to efficient joint adhesion among the graphite particles.

Proposal of a prototype plant based on the exfoliation process for the treatment of irradiated graphite

  • Pozzetto, Silvia;Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guidi, Giambattista
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.797-801
    • /
    • 2020
  • Most of irradiated graphite that should be disposed comes from moderators and reflectors of nuclear power plants. The quantity of irradiated graphite could be higher in the future if high-temperature reactors (HTRs) will be deployed. In this case noteworthy quantities of fuel pebbles containing semi-graphitic carbonaceous material should be added to the already existing 250,000 tons of irradiated graphite. Industry graphite is largely used in industrial applications for its high thermal and electrical conductivity and thermal and chemical resistance, making it a valuable material. Irradiated graphite constitutes a waste management challenge owing to the presence of long-lived radionuclides, such as 14C and 36Cl. In the ENEA Nuclear Material Characterization Laboratory it has been successfully designed a procedure based on the exfoliation process organic solvent assisted, with the purpose of investigate the possibility of achieving graphite significantly less toxic that could be recycled for other purpose [1]. The objective of this paper is to evaluate the possibility of the scalability from laboratory to industrial dimensions of the exfoliation process and provide the prototype of a chemical plant for the treatment of irradiated graphite.

Investigation on failure assessment method for nuclear graphite components

  • Gao, Yantao;Tsang, Derek K.L.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.206-210
    • /
    • 2020
  • Super fine-grained graphite is a type of advanced nuclear graphite which was developed for Molten Salt Reactor (MSR). It is necessary to establish a failure assessment method used for nuclear graphite components in MSR. A modified assessment approach based on ASME BPVC-III-5_2017 is presented. The new approach takes a new parameter, KIC, into account and abandons the parameter, grain size, which is unrealistic for super fine-grained graphite as the computation is enormous if we use conventional methods. Three methodologies (KTA 3232, ASME, New approach) were also evaluated by theoretical prediction and experimental verification. The results indicated the new developed code can be used for design and failure assessment of super fine-graphite components and has more extensive applicability.

The exfoliation of irradiated nuclear graphite by treatment with organic solvent: A proposal for its recycling

  • Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guarcini, Tiziana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1037-1040
    • /
    • 2019
  • For the past 50 years, graphite has been widely used as a moderator, reflector and fuel matrix in different kinds of gas-cooled reactors. Resulting in approximately 250,000 metric tons of irradiated graphite waste. One of the most significant long-lived radioisotope from graphite reactors is carbon-14 ($^{14}C$) with a half-life of 5730 years, this makes it a huge concern for deep geologic disposal of nuclear graphite (NG). Considering the lifecycle of NG a number of waste management options have been developed, mainly focused on the achievement the radiological requirements for disposal. The existing approaches for recycling depend on the cost to be economically viable. In this new study, an affordable process to remove $^{14}C$ has been proposed using samples taken from the Nuclear Power Plant in Latina (Italy) which have been used to investigate the capability of organic and inorganic solvents in removing $^{14}C$ from exfoliated nuclear graphite, with the aim to design a practicable approach to obtain graphite for recycling or/and safety disposed as L& LLW.

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

  • Cho, Kwang-Youn;Kim, Kyung-Ja;Lim, Yun-Soo;Chung, Yun-Joong;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.196-200
    • /
    • 2006
  • Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at $600^{\circ}C$, based on the sample of ASTM C 1179-91.

  • PDF

Oxidation Behavior of Nuclear Graphite(IG110) with Surface Roughness (표면조도에 따른 원자로급 흑연(IG110)의 산화거동)

  • Cho, Kwang-Youn;Kim, Kyong-Ja;Lim, Yun-Soo;Chi, Se-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.613-618
    • /
    • 2006
  • Graphite is suitable materials as a moderator, reflector, and supporter of a nuclear reactor because of high tolerance to the high temperature and neutron irradiations. Because graphite is so weak to the oxidation, its oxidation study is essentially demanded for the operation and design of the nuclear reactor. This work focuses on the effect of the surface oxidation of graphite according to the surface treatment. With thermogravimeter (TG), oxidation characteristics of the isotropic graphite are measured at the three temperature areas, and oxidation ratio and amounts are estimated as changing the surface roughness. Furthermore, the polished graphite surface produced fom the surface treatment is investigated with the Raman spectroscopic study. Oxidation behaviors of the surface are also evaluated as elimination the polished layer by washing with strong sonication.

Structural and radiological characterization of irradiated RBMK-1500 reactor graphite

  • Lagzdina, Elena;Lingis, Danielius;Plukis, Arturas;Plukiene, Rita;Germanas, Darius;Garbaras, Andrius;Garankin, Jevgenij;Gudelis, Arunas;Ignatjev, Ilja;Niaura, Gediminas;Krutovcov, Sergej;Remeikis, Vidmantas
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.234-243
    • /
    • 2022
  • This study aims to characterize the irradiated RBMK-1500 nuclear graphite in terms of both structural and radiological properties. The experimental results of morphological and structural analysis of the irradiated graphite samples by using SEM, Raman spectroscopy as well as the theoretical evaluation of primary displacement damage are presented. Moreover, the experimental and theoretical evaluation of the neutron flux is provided and the presence of several γ emitters in the analyzed graphite samples is assessed. Furthermore, the improved version of rapid analysis method for 14C activity determination is applied and the experimentally obtained results are compared with calculated ones. Results indicate that structural changes are uniform enough in all the analyzed samples. However, the distribution of radionuclides is non-homogeneous in the irradiated RBMK-1500 reactor graphite matrix. The comprehensive understanding of both structural and radiological characteristics of nuclear graphite is very important when dealing with decision about irradiated graphite waste management strategy or treatment options prior to its final disposal.