References
- J. Frouin, T.E. Matikas, J.K. Na, S. Sathish, In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cyclic loading, in: Nondestructive Evaluation Techniques for Aging Infrastructures &Manufacturing, vol. 3585, 1999, pp. 107-116, https://doi.org/10.1117/12.339838.
- J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves, J. Acoust. Soc. Am. 120 (3) (2006) 1266-1273, https://doi.org/10.1121/1.2221557.
- J. Zhang, F.-Z. Xuan, Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime, J. Appl. Phys. 115 (20) (2014) 204906, https://doi.org/10.1063/1.4879415.
- J. Herrmann, J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, M.F. Savage, Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves, J. Appl. Phys. 99 (12) (2006) 124913, https://doi.org/10.1063/1.2204807.
- S.V. Walker, J.-Y. Kim, J. Qu, L.J. Jacobs, Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves, NDT E Int. 48 (2012) 10-15, https://doi.org/10.1016/j.ndteint.2012.02.002.
- K.-Y. Jhang, K.-C. Kim, Evaluation of material degradation using nonlinear acoustic effect, Ultrasonics 37 (1) (1999) 39-44, https://doi.org/10.1016/S0041-624X(98)00045-6.
- K.-y. Jhang, Applications of nonlinear ultrasonics to the NDE of material degradation, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 47 (3) (2000) 540-548, https://doi.org/10.1109/58.842040.
- J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures, Int. J. Fatig. 23 (2001) 487-490, https://doi.org/10.1016/S0142-1123(01)00162-1.
- R.K. Oruganti, R. Sivaramanivas, T.N. Karthik, V. Kommareddy, B. Ramadurai, B. Ganesan, E.J. Nieters, M.F. Gigliotti, M.E. Keller, M.T. Shyamsunder, Quantification of fatigue damage accumulation using nonlinear ultrasound measurements, Int. J. Fatig. 29 (9-11) (2007) 2032-2039, https://doi.org/10.1016/j.ijfatigue.2007.01.026.
- J.L. Blackshire, S. Sathish, J.K. Na, J. Frouin, Nonlinear laser ultrasonic measurements of localized fatigue damage, in: Review of Progress in Quantitative Nondestructive Evaluation, vol. 22, 2003, pp. 1479-1488, https://doi.org/10.1063/1.1570305.
- J. Frouin, S. Sathish, T.E. Matikas, J.K. Na, Ultrasonic linear and nonlinear behavior of fatigue Ti-6Al-4V, J. Mater. Res. 14 (4) (1999) 1295-1298, https://doi.org/10.1557/JMR.1999.0176.
- L. Sun, S.S. Kulkarni, J.D. Achenbach, S. Krishnaswamy, Technique to minimize couplant-effect in acoustic nonlinearity measurements, J. Acoust. Soc. Am. 120 (5) (2006) 2500-2505, https://doi.org/10.1121/1.2354023.
- S. Liu, A.J. Croxford, S.A. Neild, Z. Zhou, Effects of experimental variables on the nonlinear harmonic generation technique, IEEE transactions 26 on ultrasonics, ferroelectrics, and frequency control 58 (7) (2011) 1442-1451, https://doi.org/10.1109/TUFFC.2011.1963.
- G. Dace, R.B. Thompson, L. Brasche, D. Rehbein, O. Buck, Nonlinear acoustics, a technique to determine microstructural changes in materials, in: Review of Progress in Quantitative Nondestructive Evaluation, 1991, pp. 1685-1692.
- A. Kumar, C.J. Torbet, J.W. Jones, T.M. Pollock, Nonlinear ultrasonics for in situ damage detection during high frequency fatigue, J. Appl. Phys. 106 (2) (2009), 024904, https://doi.org/10.1063/1.3169520.
- W.T. Yost, J.H. Cantrell, Anomalous nonlinearity parameters of solids at low acoustic drive amplitudes, Appl. Phys. Lett. 94 (2) (2009), 021905, https://doi.org/10.1063/1.3068490.
- W.D. Cash, W. Cai, Dislocation contribution to acoustic nonlinearity:The effect of orientation-dependent line energy, J. Appl. Phys. 109 (1) (2011), 014915, https://doi.org/10.1063/1.3530736.
- J.H. Cantrell, Dependence of microelastic-plastic nonlinearity of martensitic stainless steel on fatigue damage accumulation, J. Appl. Phys. 100 (6) (2006), 063508, https://doi.org/10.1063/1.2345614.
Cited by
- Optical in-situ analysis method for fatigue cracks and its application in fatigue initiation and growth study on steels with different microstructures vol.6, pp.12, 2019, https://doi.org/10.1088/2053-1591/ab5fa2
- Measurement of the Acoustic Non-Linearity Parameter of Materials by Exciting Reversed-Phase Rayleigh Waves in Opposite Directions vol.20, pp.7, 2020, https://doi.org/10.3390/s20071955