DOI QR코드

DOI QR Code

Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations

  • Li, Yingying (Division of Nuclear Materials and Fuel, State Power Investment Corporation Research Institute) ;
  • Li, Yan (National Center for Climate Change Strategy and International Cooperation) ;
  • Xiao, Wei (Division of Nuclear Materials and Fuel, State Power Investment Corporation Research Institute)
  • Received : 2018.05.23
  • Accepted : 2018.12.19
  • Published : 2019.04.25

Abstract

The tensile strength of irradiated 3C-SiC, SiC with artificial point defects, SiC with symmetric tilt grain boundaries (GBs), irradiated SiC with GBs are investigated using molecular dynamics simulations at 300 K. For an irradiated SiC sample, the tensile strength decreases with the increase of irradiation dose. The Young's modulus decreases with the increase of irradiation dose which agrees well with experiment and simulation data. For artificial point defects, the designed point defects dramatically decrease the tensile strength of SiC at low concentration. Among the point defects studied in this work, the vacancies drop the strength the most seriously. SiC symmetric tilt GBs decrease the tensile strength of pure SiC. Under irradiated condition, the tensile strengths of all SiC samples with grain boundaries decrease and converge to certain value because the structures become amorphous and the grain boundaries disappear after high dose irradiation.

Keywords

References

  1. T. Koyanagi, Y. Katoh, J. Nucl. Mater. 494 (2017) 46-54. https://doi.org/10.1016/j.jnucmat.2017.07.007
  2. Y. Katoh, L. Snead, C. Henager, T. Nozawa, T. Hinoki, A. Ivekovi, S. Novak, S.G. de Vicente, J. Nucl. Mater. 455 (1) (2014) 387-397. https://doi.org/10.1016/j.jnucmat.2014.06.003
  3. W.-J. Kim, D. Kim, J.Y. Park, Nucl. Eng. Technol. 45 (4) (2013) 565-572. https://doi.org/10.5516/NET.07.2012.084
  4. K. Yueh, D. Carpenter, H. Feinroth, Nucl. Eng. Int. 55 (2010) 14-16.
  5. Y. Katoh, L.L. Snead, C.M. Parish, T. Hinoki, J. Nucl. Mater. 434 (1-3) (2013) 141-151. https://doi.org/10.1016/j.jnucmat.2012.11.035
  6. T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, J. Nucl. Mater. 427 (1-3) (2012) 396-400. https://doi.org/10.1016/j.jnucmat.2012.05.007
  7. B. Pint, K. Terrani, M. Brady, T. Cheng, J. Keiser, J. Nucl. Mater. 440 (1-3) (2013) 420-427. https://doi.org/10.1016/j.jnucmat.2013.05.047
  8. Y. Katoh, T. Nozawa, C. Shih, K. Ozawa, T. Koyanagi, W. Porter, L.L. Snead, J. Nucl. Mater. 462 (2015) 450-457. https://doi.org/10.1016/j.jnucmat.2014.12.121
  9. L.L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, D.A. Petti, J. Nucl. Mater. 371 (1-3) (2007) 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
  10. D. Sprouster, T. Koyanagi, E. Dooryhee, S. Ghose, Y. Katoh, L. Ecker, Scripta Mater. 143 (2018) 176-180. https://doi.org/10.1016/j.scriptamat.2017.09.034
  11. A.G. Perez-Bergquist, T. Nozawa, C. Shih, K.J. Leonard, L.L. Snead, Y. Katoh, J. Nucl. Mater. 462 (2015) 443-449. https://doi.org/10.1016/j.jnucmat.2014.06.038
  12. M.I. Idris, H. Konishi, M. Imai, K. Yoshida, T. Yano, Energy Procedia 71 (2015) 328-336. https://doi.org/10.1016/j.egypro.2014.11.886
  13. Osborne, M. C., Hay, J. C., Snead, L. L., and Steiner, D. J. Am. Ceram. Soc. 82(9), 2490-2496. https://doi.org/10.1111/j.1151-2916.1999.tb02108.x
  14. Y. Li, W. Xiao, Comput. Mater. Sci. 110 (2015) 215-220. https://doi.org/10.1016/j.commatsci.2015.08.016
  15. L. Snead, S. Zinkle, J. Hay, M. Osborne, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 141 (1998) 123-132. https://doi.org/10.1016/S0168-583X(98)00085-8
  16. C. Zhang, H.-Z. Song, F. Mao, C.-J. Wang, D.-Q. Wang, F.-S. Zhang, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 406 (2017) 470-474. https://doi.org/10.1016/j.nimb.2017.04.068
  17. A. Chartier, L.V. Brutzel, J. Pageot, Carbon 133 (2018) 224-231. https://doi.org/10.1016/j.carbon.2018.03.024
  18. A. Petersen, V. Gillette, J. Nucl. Mater. 503 (2018) 157-163. https://doi.org/10.1016/j.jnucmat.2018.03.011
  19. M. Suhail, B. Puliyeri, P. Chaudhuri, R. Annabattula, N. Swaminathan, Fusion Eng. Des. 136 (2018) 914-919. https://doi.org/10.1016/j.fusengdes.2018.04.035
  20. Q. Sahi, Y.-S. Kim, Nucl. Eng. Technol. 50 (6) (2018) 907-914. https://doi.org/10.1016/j.net.2018.04.013
  21. F. Gao, W.J. Weber, Phys. Rev. B 69 (2004) 224108. https://doi.org/10.1103/PhysRevB.69.224108
  22. Y. Li, W. Xiao, H. Li, J. Nucl. Mater. 480 (2016) 75-79. https://doi.org/10.1016/j.jnucmat.2016.08.004
  23. H. Xu, R.E. Stoller, L.K. Beland, Y.N. Osetsky, Comput. Mater. Sci. 100 (2015) 135-143. https://doi.org/10.1016/j.commatsci.2014.12.026
  24. X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science 327 (2010) 1631. https://doi.org/10.1126/science.1183723
  25. M. Trochet, L.K. Beland, J.-F. Joly, P. Brommer, N. Mousseau, Phys. Rev. B 91 (2015) 224106. https://doi.org/10.1103/PhysRevB.91.224106
  26. A.A. Kohnert, B.D. Wirth, L. Capolungo, Comput. Mater. Sci. 149 (2018) 442-459. https://doi.org/10.1016/j.commatsci.2018.02.049
  27. D.E. Farrell, N. Bernstein, W.K. Liu, J. Nucl. Mater. 385 (2009) 572-581. https://doi.org/10.1016/j.jnucmat.2009.01.036
  28. F. Gao, W.J. Weber, Phys. Rev. B 66 (2002), 024106.
  29. F. Gao, W.J. Weber, J. Mater. Res. 18 (2003) 1877-1883. https://doi.org/10.1557/JMR.2003.0262
  30. Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Curr. Opin. Solid State Mater. Sci. 16 (3) (2012) 143-152. https://doi.org/10.1016/j.cossms.2012.03.005
  31. L.J. Porter, J. Li, S. Yip, J. Nucl. Mater. 246 (1) (1997) 53-59. https://doi.org/10.1016/S0022-3115(97)00035-4
  32. J. Li, L. Porter, S. Yip, J. Nucl. Mater. 255 (2) (1998) 139-152. https://doi.org/10.1016/S0022-3115(98)00034-8
  33. J. Xi, P. Zhang, C. He, H. Zang, D. Guo, T. Li, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 356 (2015) 62-68.
  34. X. Wang, L. Jamison, K. Sridharan, D. Morgan, P. Voyles, I. Szlufarska, Acta Mater. 99 (2015) 7-15. https://doi.org/10.1016/j.actamat.2015.07.070
  35. N. Swaminathan, M. Wojdyr, D.D. Morgan, I. Szlufarska, J. Appl. Phys. 111 (5) (2012) 054918. https://doi.org/10.1063/1.3693036
  36. E. Jin, L.-S. Niu, E. Lin, X. Song, J. Appl. Phys. 111 (10) (2012) 104322. https://doi.org/10.1063/1.4723648
  37. S. Bringuier, V.R. Manga, K. Runge, P. Deymier, K. Muralidharan, Mater. Sci. Eng., A 634 (2015) 161-166. https://doi.org/10.1016/j.msea.2015.03.022
  38. T. Koyanagi, T. Nozawa, Y. Katoh, L.L. Snead, J. Eur. Ceram. Soc. 38 (4) (2018) 1087-1094. https://doi.org/10.1016/j.jeurceramsoc.2017.12.026
  39. K.A. Terrani, C. Ang, L.L. Snead, Y. Katoh, J. Nucl. Mater. 499 (2018) 242-247. https://doi.org/10.1016/j.jnucmat.2017.11.040
  40. https://en.wikipedia.org/wiki/Flexural_strength.
  41. S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
  42. P. Erhart, K. Albe, Phys. Rev. B 71 (2005) 035211. Jan. https://doi.org/10.1103/PhysRevB.71.035211
  43. K. Leung, Z. Pan, D. Warner, Acta Mater. 77 (2014) 324-334. https://doi.org/10.1016/j.actamat.2014.06.016
  44. S.Z. Chavoshi, X. Luo, Mater. Sci. Eng., A 654 (2016) 400-417. https://doi.org/10.1016/j.msea.2015.11.100
  45. R. Devanathan, T.D. de la Rubia, W. Weber, J. Nucl. Mater. 253 (1-3) (1998) 47-52. https://doi.org/10.1016/S0022-3115(97)00304-8
  46. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Ranges of Ions in Solids, vol. 1, Pergamon, 1985.
  47. J. Wallace, D. Chen, J. Wang, L. Shao, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 307 (2013) 81-85. https://doi.org/10.1016/j.nimb.2013.02.036
  48. Y. Zhang, M. Ishimaru, T. Varga, T. Oda, C. Hardiman, H. Xue, Y. Katoh, S. Shannon, W.J. Weber, Phys. Chem. Chem. Phys. 14 (2012) 13429-13436. https://doi.org/10.1039/c2cp42342a
  49. A. Stukowski, Model. Simulat. Mater. Sci. Eng. 18 (1) (2010) 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  50. F. Gao, E.J. Bylaska, W.J. Weber, L.R. Corrales, Phys. Rev. B 64 (2001) 245208. https://doi.org/10.1103/PhysRevB.64.245208
  51. H. Ogawa, Mater. Trans. 47 (11) (2006) 2706-2710. https://doi.org/10.2320/matertrans.47.2706
  52. M. Wojdyr, S. Khalil, Y. Liu, I. Szlufarska, Model. Simulat. Mater. Sci. Eng. 18 (7) (2010) 075009. https://doi.org/10.1088/0965-0393/18/7/075009
  53. K. Xue, L.-S. Niu, J. Appl. Phys. 106 (8) (2009) 083505. https://doi.org/10.1063/1.3245391
  54. M. Ishimaru, I.-T. Bae, Y. Hirotsu, S. Matsumura, K.E. Sickafus, Phys. Rev. Lett. 89 (2002) 055502. https://doi.org/10.1103/PhysRevLett.89.055502
  55. M. Ishimaru, A. Hirata, M. Naito, I.-T. Bae, Y. Zhang, W.J. Weber, J. Appl. Phys. 104 (3) (2008) 033503. https://doi.org/10.1063/1.2960342
  56. S. Kiani, K. Leung, V. Radmilovic, A. Minor, J.-M. Yang, D. Warner, S. Kodambaka, Acta Mater. 80 (2014) 400-406. https://doi.org/10.1016/j.actamat.2014.07.066
  57. F.L. Via, A. Severino, R. Anzalone, C. Bongiorno, G. Litrico, M. Mauceri, M. Schoeler, P. Schuh, P. Wellmann, Mater. Sci. Semicond. Process. 78 (2018) 57-68. https://doi.org/10.1016/j.mssp.2017.12.012
  58. H. Cheng, M. Yang, Y. Lai, M. Hu, Q. Li, R. Tu, S. Zhang, M. Han, T. Goto, L. Zhang, J. Eur. Ceram. Soc. 38 (9) (2018) 3057-3063. https://doi.org/10.1016/j.jeurceramsoc.2018.03.015

Cited by

  1. Study on displacement cascade and tensile simulation by molecular dynamics: Formation and properties of point defects vol.35, pp.10, 2019, https://doi.org/10.1142/s021797922150140x