DOI QR코드

DOI QR Code

Pulsed laser welding of Zr-1%Nb alloy

  • Elkin, Maxim A. (Tomsk Polytechnic University) ;
  • Kiselev, Alexey S. (Tomsk Polytechnic University) ;
  • Slobodyan, Mikhail S. (Tomsk Polytechnic University)
  • Received : 2018.07.16
  • Accepted : 2018.12.21
  • Published : 2019.04.25

Abstract

Laser welding is usually a more effective method than electron-beam one since a vacuum chamber is not required. It is important for joining Zr-1%Nb (E110) alloy in a manufacturing process of nuclear fuel rods. In the present work, effect of energy parameters of pulsed laser welding on properties of butt joints of sheets with a thickness of 0.5 mm is investigated. The most efficient combination has been found (8-11 J pulse energy, 10-14 ms pulse duration, 780-810 W peak pulse power, 3 Hz pulse frequency, 1.12 mm/s welding speed). The results show that ultimate strength under static loading can not be used as a quality criterion for zirconium alloys welds. Increased shielding gas flow rate does not allow to protect weld metal totally and contributes to defect formation without using special nozzles. Several types of imperfections of the welds have been found, but the major problem is branching microcracks on the surface of the welds. It is difficult to identify the cause of their appearance without additional research on improving the welding zone protection (gas composition and flow rate as well as nozzle configuration) and studying the hydrogen content in the welds.

Keywords

References

  1. P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burnup fuel issues, Nuclear Engineering and Technology 40 (1) (2008) 1-8. https://doi.org/10.5516/NET.2008.40.1.001
  2. Quality and Reliability Aspects in Nuclear Power Reactor Fuel Engineering, International Atomic Energy Agency, Vienna, 2015.
  3. A.V. Nikulina, A.G. Malgin, Impurities and their effect on the structure and properties of zirconium parts in nuclear reactors, Atom. Energy 105 (5) (2008) 328-339. https://doi.org/10.1007/s10512-009-9104-7
  4. Russian Technical Specification TU 95.166-98 Zirconium Alloys in Ingots.
  5. S.A. Nikulin, Zirconium Alloys for Nuclear Power Reactors, MISiS, Miscow, 2007.
  6. Physical material science, in: B.A. Kalin (Ed.), Part 1: Structural Materials for Nuclear Engineering, vol. 6, MEPhI, Moscow, 2008.
  7. ISO 9606-5:2000 Approval Testing of Welders - Fusion Welding - Part 5: Titanium and Titanium Alloys, Zirconium and Zirconium Alloys.
  8. ISO 15614-5:2004 Specification and Qualification of Welding Procedures for Metallic Materials e Welding Procedure Test e Part 5: Arc Welding of Titanium, Zirconium and Their Alloys.
  9. AWS G2.5/G2.5M:2012 Guide for the Fusion Welding of Zirconium and Zirconium Alloys.
  10. Russian Technical Specification OST 95 503-2006 Welded and Brazed Joints of Parts of Nuclear Reactor Cores. General Technical Requirements. Acceptance Rules and Quality Control Methods.
  11. Russian Technical Specification OST 95 877-2011 Nuclear Reactors. Nuclear Reactor Cores. Welded and Brazed Joints. Design and Organization of Manufacturing Processes Rules.
  12. Review of Fuel Failures in Water Cooled Reactors, International Atomic Energy Agency, Vienna, 2010.
  13. P. Mishra, V.P. Jathar, J.L. Singh, D.N. Sah, P.K. Shah, S. Anantharaman, Inreactor degradation of fuel and cladding in fuel pins operated with weld defects, J. Nucl. Mater. 439 (1-3) (2013) 217-223. https://doi.org/10.1016/j.jnucmat.2012.05.033
  14. M.S. Slobodyan, Methods of creation of permanent zirconium alloy joints in reactor art: a review, Tsvetnye Met. 10 (2016) 91-98. https://doi.org/10.17580/tsm.2016.10.13
  15. A.G. Grigoriyants, Fundamentals of Laser Processing of Materials, Mechanical engineering, Moscow, 1989.
  16. S. Katayama (Ed.), Handbook of Laser Welding Technologies, Woodhead Publishing Limited, Cambridge, 2013.
  17. D. Havrilla, Process Fundamentals of Industrial Laser Welding and Cutting, Rofin-Sinar Inc., Plymouth, 1999.
  18. C. Dawes, Laser Welding: a Practical Guide, Woodhead Publishing Limited, Cambridge, 2008.
  19. X.-L. Gao, J. Liu, L.-J. Zhang, J.-X. Zhang, Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets, Mater. Char. 93 (2014) 136-149. https://doi.org/10.1016/j.matchar.2014.04.005
  20. R. Johnson, Lasers in the nuclear industry, in: Laser Weld, Cutting and Surface Treatment, The Welding Institute, Abington, 1984, pp. 43-47.
  21. V. Ram, G. Kohn, A. Stern, $CO_2$ laser beam weldability of Zircaloy-2, Weld. J. 65 (7) (1986) 33-38.
  22. F.G. Reshetnikov (Ed.), Development, Production and Operation of Fuel Rods of Power Reactors, vol. 2, Energoatomizdat, Moscow, 1995.
  23. S.-S. Kim, C.-Y. Lee, M.S. Yang, Investigation on Nd:YAG laser weldability of Zircaloy-4 end cap closure for nuclear fuel elements, Journal of the Korean Nuclear Society 33 (2) (2001) 175-183.
  24. Q. Wan, X. Bai, X. Liu, Impact of yttrium ion implantation on corrosion behavior of laser beam welded Zircaloy-4 in sulfuric acid solution, Appl. Surf. Sci. 252 (5) (2005) 1974-1980. https://doi.org/10.1016/j.apsusc.2005.03.154
  25. Q. Wan, X. Bai, X. Zhang, Impact of high dose krypton ion irradiation on corrosion behavior of laser beam welded Zircaloy-4, Mater. Res. Bull. 41 (2) (2006) 387-395. https://doi.org/10.1016/j.materresbull.2005.08.007
  26. K. Une, S. Ishimoto, Crystallographic measurement of the ${\beta}$ to ${\alpha}$ phase transformation and ${\delta}$-hydride precipitation in a laser-welded Zircaloy-2 tube by electron backscattering diffraction, J. Nucl. Mater. 389 (2009) 436-442. https://doi.org/10.1016/j.jnucmat.2009.02.033
  27. K.-N. Song, S.-S. Kim, S.-H. Lee, S.-B. Lee, Laser welding unit for intersection line welding of spacer grid inner straps and its application, Journal of Laser Micro/Nanoengineering 4 (1) (2009) 11-17. https://doi.org/10.2961/jlmn.2009.01.0003
  28. K.-N. Song, S.-D. Hong, S.-H. Lee, H.-Y. Park, Effect of mechanical properties in the weld zone on the structural analysis results of a plate-type heat exchanger prototype and pressurized water reactor spacer grid, J. Nucl. Sci. Technol. 49 (9) (2012) 947-960. https://doi.org/10.1080/00223131.2012.713571
  29. K.-N. Song, S.-H. Lee, Effect of weld properties on the crush strength of the PWR spacer grid, Science and Technology of Nuclear Installations 2012 (2012) 540285, https://doi.org/10.1155/2012/540285.
  30. N. Boutarek, B. Azzougui, D. Saidi, M. Neggache, Microstructure change in the interface of $CO_2$ laser welded zirconium alloys, Physics Procedia 2 (3) (2009) 1159-1165. https://doi.org/10.1016/j.phpro.2009.11.078
  31. D.H. Jeong, J.H. Kim, Fatigue characteristics of laser welded Zircaloy thin sheet, Int. J. Mod. Phys.: Conference Series 6 (2012) 367-372. https://doi.org/10.1142/S2010194512003455
  32. Q. Han, D. Kim, D. Kim, H. Lee, N. Kim, Laser pulsed welding in thin sheets of Zircaloy-4, J. Mater. Process. Technol. 212 (2012) 1116-1122. https://doi.org/10.1016/j.jmatprotec.2011.12.022
  33. W. Tao, C. Cai, L. Li, Y. Chen, I.L. Wang, Pulsed laser spot welding of intersection points for Zircaloy-4 spacer grid assembly, Mater. Des. 52 (2013) 487-494. https://doi.org/10.1016/j.matdes.2013.05.037
  34. S. Livingstone, L. Xiao, E.C. Corcoran, G.A. Ferrier, K.N. Potter, Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding), Nucl. Eng. Des. 284 (2015) 97-105. https://doi.org/10.1016/j.nucengdes.2014.11.029
  35. S. Kim, W. Lee, D. Kim, One-step distortion simulation of pulsed laser welding with multi-physics information, Int. J. Simulat. Model. 14 (1) (2015) 85-97.
  36. S. Kim, W.-J. Lee, Q. Han, D. Kim, Pulsed laser induced mechanical behavior of Zircaloy-4, J. Mater. Res. 30 (4) (2015) 556-565. https://doi.org/10.1557/jmr.2014.390
  37. C. Cai, W. Tao, L. Li, Y. Chen, Weld bead formation and corrosion behavior of pulsed laser welded zirconium alloy, Int. J. Adv. Manuf. Technol. 77 (2015) 621-628. https://doi.org/10.1007/s00170-014-6474-3
  38. C. Cai, L. Li, W. Tao, G. Peng, X. Wang, Weld bead size, microstructure and corrosion behavior of zirconium alloys joints welded by pulsed laser spot welding, J. Mater. Eng. Perform. 25 (2016) 3783-3792. https://doi.org/10.1007/s11665-016-2250-x
  39. S.-S. Kim, G.-I. Park, J.-H. Koh, Laser welding of dissimilar sheath metals, Mater. Sci. Forum 580-582 (2008) 493-499. https://doi.org/10.4028/www.scientific.net/MSF.580-582.493
  40. H. Serizawa, Y. Asakura, H. Motoki, D. Tanigawa, М. Tsukamoto, J.-S. Park, H. Kishimoto, A. Kohyama, Development of joining method between Zircaloy and SiC/SiC composite tubes by using diode laser, Mater. Sci. Forum 879 (2017) 1743-1748. https://doi.org/10.4028/www.scientific.net/msf.879.1743
  41. J.-N. Yang, L.-J. Zhang, J. Ning, Q.-L. Bai, J.-Y. Pei, J.-Z. Liu, G.-F. Lu, J.-X. Zhang, Fiber laser welding characteristics of commercially pure zirconium (R60702) and structure-mechanics-corrosion performances of the joint, Int. J. Refract. Metals Hard Mater. 73 (2018) 58-73. https://doi.org/10.1016/j.ijrmhm.2018.01.023
  42. S.S. Mahlalela, P.G.H. Pistorius, Microstructural characterization of laser beam and gas tungsten arc welded zirconium-2.5Nb, J. S. Afr. Inst. Min. Metall 117 (10) (2017) 947-953. https://doi.org/10.17159/2411-9717/2017/v117n10a4
  43. J. Chen, A. Khalifa, L. Xue, M. King, Laser weldability of Zr-2.5Nb alloy to AISI 410 stainless steel with Ni filler, J. Mater. Process. Technol. 255 (2018) 184-194. https://doi.org/10.1016/j.jmatprotec.2017.12.003
  44. G. Satyanarayana, K.L. Narayana, B. Nageswara Rao, Numerical simulations on the laser spot welding of zirconium alloy endplate for nuclear fuel bundle assembly, Lasers in Manufacturing and Materials Processing 5 (1) (2018) 53-70. https://doi.org/10.1007/s40516-018-0053-7
  45. G. Satyanarayana, K.L. Narayana, B. Nageswara Rao, Identification of optimum laser beam welding process parameters for E110 zirconium alloy butt joint based on Taguchi-CFD simulations, Lasers in Manufacturing and Materials Processing 182 (5) (2018), https://doi.org/10.1007/s40516-018-0061-7.
  46. A.S. Zaymovskiy, A.V. Nikulina, N.G. Reshetnikov, Zirconium Alloys in Nuclear Energy, Energoizdat, Moscow, 1994.
  47. ANSI/AWS B4.0-2007 Standard Methods for Mechanical Testing of Welds.
  48. ISO 6507-1:2018 Metallic Materials - Vickers Hardness Test - Part 1: Test Method.
  49. ISO 22826:2005 Destructive Tests on Welds in Metallic Materials e Hardness Testing of Narrow Joints Welded by Laser and Electron Beam (Vickers and Knoop Hardness Tests).
  50. ISO 6520-1:2007 Welding and Allied Processes e Classification of Geometric Imperfections in Metallic Materials e Part 1: Fusion Welding.

Cited by

  1. Corrosion and high-temperature steam oxidation of E110 alloy and its laser welds after ion irradiation vol.152, 2019, https://doi.org/10.1016/j.corsci.2019.02.031
  2. Experimental and Numerical Study of AISI 4130 Steel Surface Hardening by Pulsed Nd:YAG Laser vol.12, pp.19, 2019, https://doi.org/10.3390/ma12193136
  3. Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review vol.53, pp.4, 2021, https://doi.org/10.1016/j.net.2020.10.005
  4. High-temperature oxidation of Cr-coated laser beam welds made from E110 zirconium alloy vol.195, 2019, https://doi.org/10.1016/j.corsci.2021.110018