References
- H.-M. Prasser, C. Bolesch, K. Cramer, D. Ito, P. Papadopoulos, A. Saxena, R. Zboray, Bubbly, slug, and annular two-phase flow in tight-lattice subchannels, Nucl. Eng. Tech. 48 (2016) 847-858. https://doi.org/10.1016/j.net.2016.06.007
- A. Rabiee, A.H. Kamalinia, K. Hadad, Two-phase flow field simulation of horizontal steam generators, Nucl. Eng. Tech. 49 (2017) 92-102. https://doi.org/10.1016/j.net.2016.08.008
- A.P. Paiva, P. Malik, Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes, J. Radioanal. Nucl. Chem. 261 (2004) 485-496. https://doi.org/10.1023/B:JRNC.0000034890.23325.b5
- P. Amani, J. Safdari, A. Gharib, Mass transfer studies in a horizontal pulsed sieve-plate column for uranium extraction by tri-n-octylamine using axial dispersion model, Prog. Nucl. Energy 98 (2017) 71-84. https://doi.org/10.1016/j.pnucene.2017.02.010
- A.O. de Santana, C.C. Dantas, Scale up of the mixer of a mixer-settler model used in a uranium solvent extraction process, J. Radioanal. Nucl. Chem. 189 (1995) 257-269. https://doi.org/10.1007/BF02042604
- S. Kumar, D. Sivakumar, B. Kumar, Development of a miniature Taylor-Couette extractor column for nuclear solvent extraction, J. Radioanal. Nucl. Chem. 292 (2012) 1237-1240. https://doi.org/10.1007/s10967-012-1688-z
- S. Sarkar, N. Sen, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, Effect of operating and geometric parameters on dispersed phase holdup in pulsed disc and doughnut and pulsed sieve plate columns: a comparative study, Chem. Eng. Process 118 (2017) 131-142. https://doi.org/10.1016/j.cep.2017.04.016
- M. Jaradat, M. Attarakih, H.-J. Bart, Population balance modeling of pulsed (packed and sieve-plate) extraction columns: coupled hydrodynamic and mass transfer, Ind. Eng. Chem. Res. 50 (24) (2011) 14121-14135. https://doi.org/10.1021/ie201041q
- N. Kopriwa, F. Buchbender, J. Ayesteran, M. Kalem, A. Pfennig, A critical review of the application of drop-population balances for the design of solvent extraction columns: I. concept of solving drop-population balances and modelling breakage and coalescence, Solvent Extr. Ion Exch. 30 (2012) 683-723. https://doi.org/10.1080/07366299.2012.700598
- M. Kalem, M.Y. Altunok, A. Pfennig, Sedimentation behavior of droplets for the reactive extraction of zinc with D2-HPA, AIChE J. 56 (2010) 160-167. https://doi.org/10.1002/aic.11976
- G.S. Luo, H.B. Li, X.J. Tang, J.D. Wang, Drop breakage in a coalescencedispersion pulsed-sieve-plate extraction column, Chem. Eng. J. 102 (2004) 185-191. https://doi.org/10.1016/j.cej.2004.04.003
- M. Attarakih, H.B. Jildeh, M. Mickler, H.-J. Bart, A.K. Iftekhar, S. Rajagopalan, The OPOSPM as a nonlinear autocorrelation population balance model for dynamic simulation of liquid extraction columns, Comp. Aided Chem. Eng. 31 (2012) 1216-1220 (2012). https://doi.org/10.1016/B978-0-444-59506-5.50074-2
- A.M.I. Al-Rahawi, S.K.A. Dawery, Influence of inlet distributor and column diameter on hydrodynamic characteristics in RDC liquid extraction column, Int. J. Res. Eng. Tech. 5 (2016) 359-372. https://doi.org/10.15623/ijret.2016.0504068
- G.F. Scheele, B.J. Meister, Drop formation at low velocities in liquid-liquid systems, AIChE J. 14 (1968) 9-15. https://doi.org/10.1002/aic.690140105
- B.J. Meister, G.F. Scheele, Prediction of jet length in immiscible liquid systems, AIChE J. 15 (1969) 689-699. https://doi.org/10.1002/aic.690150512
- B.J. Meister, G.F. Scheele, Drop formation from cylindrical jets in immiscible liquid systems, AIChE J. 15 (1969) 700-706. https://doi.org/10.1002/aic.690150513
- J.T. Long, Engineering for Nuclear Fuel Reprocessing, La Grange Park e III, American Nuclear Society, 1978.
- F. Baumgaertner, L. Finsterwalder, On the transfer mechanism of uranium (VI) and plutonium (IV) nitrate in the system nitric acid-water/tributylphosphatedodecane, J. Phys. Chem. 74 (1970) 108-112. https://doi.org/10.1021/j100696a019
- C.B. Hayworth, R.E. Treybal, Drop formation in two liquid phase systems, Ind. Eng. Chem. 42 (1950) 1174-1181. https://doi.org/10.1021/ie50486a030
- H.R. Null, H.F. Johnson, Drop formation in liquid-liquid systems from single nozzles, AIChE J. 4 (1958) 273-281. https://doi.org/10.1002/aic.690040308
- E.V.L.N. Rao, R. Kumar, N.R. Kuloor, Drop formation studies in liquid - liquid systems, Chem. Eng. Sci. 21 (1966) 867-880. https://doi.org/10.1016/0009-2509(66)85081-9
- A. Kumar, S. Hartland, Prediction of drop size produced by a multiorifice distributor, Trans. Inst. Chem. Eng. 60 (1982) 35-39.
- F.A. Hamad, M.K. Khan, B.K. Pierscionek, H.H. Bruun, Comparison of experimental results and numerical predictions of drop diameter from a single submerged nozzle in a liquid-liquid system, Can. J. Chem. Eng. 79 (2001) 322-328. https://doi.org/10.1002/cjce.5450790304
- R.K. Wanchoo, S.K. Sharma, R. Gupta, Shape of a Newtonian liquid drop moving through an immiscible quiescent non-Newtonian liquid, Chem. Eng. Proc. Process. Inten. 42 (2003) 387-393. https://doi.org/10.1016/S0255-2701(02)00059-4
- M.C. Sostarecz, A. Belmonte, Motion and shape of a viscoelastic drop falling through a viscous fluid, J. Fluid Mech. 497 (2003) 235-252. https://doi.org/10.1017/S0022112003006621
- M. Wegener, M. Kraume, A.R. Paschedag, Terminal and transient drop rise velocity of single toluene droplets in water, AIChE J. 56 (1) (2010) 2-10. https://doi.org/10.1002/aic.11969
- A. Roy, M. Darekar, K.K. Singh, K.T. Shenoy, R.B. Grover, Drop formation at nozzles submerged in quiescient continuous phase: an experimental study with TBP-dodecane and nitric acid system, Nucl. Sci. Technol. 29 (2018) 88. https://doi.org/10.1007/s41365-018-0415-z
- L.E.M. de Chazal, J.T. Ryan, Formation of organic drops in water, AIChE J. 17 (1971) 1226-1229. https://doi.org/10.1002/aic.690170531
- N.W. Geary, R.G. Rice, Bubble size prediction for rigid and flexible spargers, AIChE J. 37 (1991) 161-168. https://doi.org/10.1002/aic.690370202
- W.P. Da Silva, C.M.D.P.S. Cavalcanti, C.G.B. Silva, D.D.P.S. Soares, I.B.J.A.S. Oliveira, C.D.P.S. Silva, LAB Fit Curve Fitting: a software in Portuguese for treatment of experimental data, Rev. Bras. Ensino Fisica 26 (2004) 419-427. https://doi.org/10.1590/S1806-11172004000400018