DOI QR코드

DOI QR Code

골유도재생술용 차폐막 적용을 위한 polyvinylidene fluoride와 polyacrylonitrile 나노섬유의 평가

Evaluation of Polyvinylidene Fluoride and Polyacrylonitrile Nanofibers for Barrier Membrane Application in Guided Bone Regeneration

  • 임윤경 (조선대학교 치과대학 구강생화학교실) ;
  • 국중기 (조선대학교 치과대학 구강생화학교실) ;
  • 유상준 (조선대학교 치과대학 치주과학교실) ;
  • 이원표 (조선대학교 치과대학 치주과학교실) ;
  • 이경현 (조선대학교 치과대학 치주과학교실) ;
  • 김희중 (조선대학교 치과대학 보철학교실) ;
  • 이승훈 (숭실대학교 유기신소재파이버공학과) ;
  • 김찬 ((주)아모그린텍 신소재 연구소)
  • Lim, Yun Kyong (Department of Oral Biochemistry, School of Dentistry, Chosun University) ;
  • Kook, Joong Ki (Department of Oral Biochemistry, School of Dentistry, Chosun University) ;
  • Yu, Sang Joun (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Lee, Won Pyo (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Lee, Kyung Hyun (Department of Periodontology, School of Dentistry, Chosun University) ;
  • Kim, Hee Jung (Department of Prosthodontics, School of Dentistry, Chosun University) ;
  • Lee, Seung Hoon (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Chan (Amogreentech Co., Ltd.)
  • 투고 : 2019.04.05
  • 심사 : 2019.06.06
  • 발행 : 2019.06.30

초록

Recently, various nanofiber membranes for guided bone regeneration using electrospinning methods have been reported. The purpose of this study was to evaluate the in vitro osteogenesis efficiency of electrospun polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) membranes. Nano sized topography, mechanical properties, and biological evaluations were performed to compare the PVDF and PAN nanofiber membranes with the commercially available polytetrafluoroethylene (PTFE) membrane. The cytotoxicities of these membranes were evaluated using the MTT assay. Alkaline phosphatase (ALP) activity and the calcium concentration were determined to evaluate the in vitro bone formation activities of the above-mentioned membranes. Expression levels of the osteoblast differentiation marker genes (RUNX2, OSX, OCN, and COL1A1 genes) were determined using the real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent (ELISA) assay. Approximately 300 nm three-dimensional porous structures, with pores connected/extending from the surface to the rear/bottom were observed in each PVDF and PAN nanofiber membrane using a scanning electron microscope. The strength and elongation of the porous structures were superior to those seen in the PTFE membrane. The cell viability, ALP activity, and calcium concentration were higher in these nanofiber membranes as compared to those in the PTFE membrane. RT-qPCR and ELISA assay analysis also showed that the nanofiber membranes had better osteogenesis efficiencies as compared to the PTFE membrane after 7 days. The results in this study demonstrate that the electrospun PVDF and PAN nanofiber membranes could potentially function as barrier membranes for bone tissue regeneration.

키워드

참고문헌

  1. C. S. Shin and H. Y. Cho, "Bone Remodeling and Mineralization", Endocrinol. Metab., 2005, 20, 543-555.
  2. Y. S. Won, C. H. Choi, and H. N. OH, "Risk Factors of Periodontal Disease in Korean Adults", J. Korean Acad. Oral Health, 2014, 38, 176-183. https://doi.org/10.11149/jkaoh.2014.38.3.176
  3. A. H. Melcher, "On the Repair Potential of Periodontal Tissue", J. Periodontol., 1976, 47, 256-260. https://doi.org/10.1902/jop.1976.47.5.256
  4. D. H. Han, K. S. Hong, C. H. Chung, and S. B. Yim, "A Comparative Study for Guided Bone Regeneration of Silk Fibroin Nanomembrane(NanoGide-STM)", The Korean Academy of Periodontology, 2008, 38, 475-482. https://doi.org/10.5051/jkape.2008.38.3.475
  5. J. Gottlow, S. Nyman, J. Lindhe, T. Karring, and J. Wennstrom, "New Attachment Formation in the Human Periodontium by Guided Tissue Regeneration. Case Reports", J. Clin. Periodontol., 1986, 13, 604-616. https://doi.org/10.1111/j.1600-051X.1986.tb00854.x
  6. S. Nyman, T. Karring, and J. Lindhe, "The Regenerative Potential of the Periodontal Ligament. An Experimental Study in the Monkey", J. Clin. Periodontol., 1982, 9, 257-265. https://doi.org/10.1111/j.1600-051X.1982.tb02065.x
  7. Z. Sheikh, M. N. Abdallah, N. Hamdan, M. A. Javaid, and Z. Khurshid, "Barrier Membranes for Periodontal Guided Tissue Regeneration Applications", Handbook of Oral Biomaterials, 1st ed., Chapter 19, Pan Stanford Publishing, 2014, pp.601-638.
  8. R. K. Schenk, D. Buser, W. R. Hardwick, and C. Dahlin, "Healing Pattern of Bone Regeneration in Membraneprotected Defects: A Histologic Study in the Canine Mandible", Int. J. Oral. Maxillofac Implants, 1994, 9, 13-29.
  9. E. G. Cho, C. Kim, J. K. Kook, Y. I. Jeong, J. H. Kim, Y. A. Kim, M. Endo, and C. H. Hwang, "Fabrication of Electrospun PVDF Nanofiber Membrane for Western Blot with High Sensitivity", J. Membr. Sci., 2012, 389, 349-354. https://doi.org/10.1016/j.memsci.2011.10.047
  10. J. Xue, M. He, Y. Liang, A. Crawford, P. Coates, D. Chen, R. Shi, and L. Zhang, "Fabrication and Evaluation of Electrospun PCL-gelatin Micro-/nanofiber Membranes for Anti-infective GTR Implants", J. Mat. Chem. B, 2014, 2, 6867-6877. https://doi.org/10.1039/C4TB00737A
  11. H. G. Jeong, Y. S. Han, K. H. Jung, and Y. J. Kim, "Poly(vinylidene fluoride) Composite Nanofibers Containing Polyhedral Oligomeric Silsesquioxane-Epigallocatechin Gallate Conjugate for Bone Tissue Regeneration", Nanomaterials, 2019, 9, 184-199. https://doi.org/10.3390/nano9020184
  12. S. H. Lee, Y. M. So, S. H. Jang, H. J. Sim, and C. Kim, "A Feasibility Study of Commercialization of PVDF Nanofiber Containing Plasticizer", Text. Sci. Eng., 2017, 54, 217-223. https://doi.org/10.12772/TSE.2017.54.217
  13. H. Wei, M. Zuwei, Y. Thomas, E. T. Wee, and R. Seeram, "Fabrication of Collagen-coated Biodegradable Polymer Nanofiber Mesh and Its Potential for Endothelial Cells Growth", Biomaterials, 2005, 26, 7606-7615. https://doi.org/10.1016/j.biomaterials.2005.05.049
  14. J. Y. Shim, I. H. Kim, M. K. Paik, and A. S. Om, "Proliferation and Extra Cellular Matrix Formation Effects of Genistein on Human Osteoblast-like MG-63 Cell Line", Cancer Prev. Res., 2009, 14, 48-53.
  15. B. R. Sin, H. M. Kim, S. M. Kim, D. K. Kim, J. E. Song, C. H. Park, and G. S. Kang, "Osteogenesis Differentiation of Rabbit Bone Marrow-mesenchymal Stem Cells in Silk Scaffold Loaded with Various Ratios of Hydroxyapatite", Polymer(Korean), 2016, 40, 915-924. https://doi.org/10.7317/pk.2016.40.6.915
  16. G. I. Im, "Intracellular Signal Transduction Pathways and Transcription Factors for Osteogenesis", J. Rheum. Dis.(JRD), 2008, 15, 1-10.
  17. Y. Liu, C. Xu, Y. Gu, X. Shen, Y. Zhang, B. Li, and L. Chen, "Polydopamine-modified Poly(L-lactic acid) Nanofiber Scaffolds Immobilized with an Osteogenic Growth Peptide for Bone Tissue Regeneration", RSC Adv., 2019, 9, 11722-11736. https://doi.org/10.1039/C8RA08828D
  18. J. H. Kim, D. K. Kim, O. J. Lee, H. W. Ju, J. M. Lee, B. M. Moon, H. J. Park, D. W. Kim, J. M. Lee, and C. H. Park, "Osteoinductive Silk Fibroin/titanium Dioxide/hydroxyapatite Hybrid Scaffold for Bone Tissue Engineering", Inter. J. Biol. Macromol., 2016, 82, 160-167. https://doi.org/10.1016/j.ijbiomac.2015.08.001
  19. K. Nakashima, X. Zhou, G. Kunkel, Z. Zhang, J. M. Deng, R. R. Behringer, and B. Crombrugghe, "The Novel Zinc Fingercontaining Transcription Factor Osterix is Required for Osteoblast Differentiation and Bone Formation", Cell, 2002, 108, 17-29. https://doi.org/10.1016/S0092-8674(01)00622-5
  20. X. Wang, B. Ding, and B. Li, "Biomimetic Electrospun Nanofibrousstructures for Tissue Engineering", Materials Today, 2013, 16, 229-241. https://doi.org/10.1016/j.mattod.2013.06.005