DOI QR코드

DOI QR Code

바이러스 열성 저항성: 병저항성 작물 개발을 위한 유전자 교정 소재 발굴 연구의 동향

Recessive Resistance: Developing Targets for Genome Editing to Engineer Viral Disease Resistant Crops

  • 한수정 (서울대학교 국제농업기술학과 및 그린바이오과학기술연구원) ;
  • 허경재 (서울대학교 국제농업기술학과 및 그린바이오과학기술연구원) ;
  • 최보람 (서울대학교 국제농업기술학과 및 그린바이오과학기술연구원) ;
  • 서장균 (서울대학교 국제농업기술학과 및 그린바이오과학기술연구원)
  • Han, Soo-Jung (Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University) ;
  • Heo, Kyeong-Jae (Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University) ;
  • Choi, Boram (Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University) ;
  • Seo, Jang-Kyun (Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University)
  • 투고 : 2019.03.07
  • 심사 : 2019.03.28
  • 발행 : 2019.06.30

초록

식물 바이러스는 작물 생산량 손실을 일으키는 주요 병원체 중 하나로, 돌연변이 발생이 빈번하고 치료 약제가 개발되어 있지 않아 방제가 매우 어렵다. 이러한 바이러스병을 방제하기 위한 가장 효과적인 방법은 저항성 품종을 재배하는 것이며, 바이러스 저항성 품종을 개발하기 위해서는 바이러스와 기주 식물 간의 다양한 유전자적 상호작용에 대한 정확한 이해가 필요하다. 열성 저항성은 병원체가 살아가는데 필요한 식물 유전자가 결핍되었을 때 획득되는데, 저항성 유전자(R gene)에 의해 유도되는 우성 저항성에 비해 넓은 범위의 저항성을 발현하고 돌연변이 출현에 쉽게 저항성이 깨지지 않는 특성을 보인다. 현재까지 알려진 바이러스병에 대한 열성 저항성 유전자는 대부분 순행유전학(forward genetics)를 통해 밝혀졌으나, 최근 CRISPR/Cas9 등을 이용한 유전자 교정 기술의 급속한 발전에 힘입어 역유전학(reverse genetics)을 통한 열성 저항성 작물개발의 가능성이 열리고 있다. 이러한 역유전학적 접근을 통한 열성 저항성 작물 개발은 먼저 바이러스 단백질과 상호작용하는 기주 인자를 밝히고 이들간의 상호작용을 억제하도록 하는 기주 인자에 대한 유전자 교정을 통해 이루어 질 수 있다. 본 논문에서는 열성 저항성에 대한 소개와 새로운 열성 저항성 후보 유전 소재 발굴을 위한 기주 인자 연구의 중요성 및 방법을 소개하고, 열성 저항성 작물 개발에 적용할 수 있는 유전자 교정기술의 최신 동향에 관해 정리하였다.

Plant viruses are among the important pathogens that cause severe crop losses. The most efficient method to control viral diseases is currently to use virus resistant crops. In order to develop the virus resistant crops, a detailed understanding of the molecular interactions between viral and host proteins is necessary. Recessive resistance to a pathogen can be conferred when plant genes essential in the life cycle of a pathogens are deficient, while dominant resistance is mediated by host resistance (R) genes specifically interacting with effector proteins of pathogens. Thus, recessive resistance usually works more stably and broadly than dominant resistance. While most of the recessive resistance genes have so far been identified by forward genetic approaches, recent advances in genome editing technologies including CRISPR/Cas9 have increased interest in using these technologies as reverse genetic tools to engineer plant genes to confer recessive resistance. This review summarizes currently identified recessive resistance genes and introduces reverse genetic approaches to identify host interacting partner proteins of viral proteins and to evaluate the identified genes as genetic resources of recessive resistance. We further discuss recent advances in various precise genome editing technologies and how to apply these technologies to engineer plant immunity.

키워드

SMBRCU_2019_v25n2_49_f0001.png 이미지

Fig. 1. Schematic representation of dominant and recessive resistance in a plant-virus pathosystem. A virus-encoded protein can act as an avirulence factor that is recognized by a host-encoded resistance (R) protein. The interaction between a viral avirulence factor and a host R protein triggers down-stream defense responses, resulting in activation of dominant resistance. Plant viruses are obligate parasites and require various host-encoded proteins (host factors) to complete the steps of their life cycle. Therefore, the absence of appropriate host factors or inhibition of the interactions between viral proteins and corresponding host factors may confer recessive resistance.

SMBRCU_2019_v25n2_49_f0002.png 이미지

Fig. 2. Simplified overview for generation of transgene-free, genome-edited plants using CRISPR/Cas9. Arabidopsis plants can be transformed by Agrobacterium carrying a CRISPR/Cas9 construct. Targeted mutagenesis events can occur in transgenic T1 plants. In T2 plants, the T-DNA segregates in a Mendelian fashion for single-locus lines, and thereby transgene-free, homozygously mutated plants can occur in T2.

Table 1. Antiviral recessive resistance genes associated with translation initiation

SMBRCU_2019_v25n2_49_t0001.png 이미지

Table 2. The genetic resources for recessive resistance found in loss-of-susceptibility mutants and naturally occurring resistant cultivars

SMBRCU_2019_v25n2_49_t0002.png 이미지

Table 2. Continued

SMBRCU_2019_v25n2_49_t0003.png 이미지

참고문헌

  1. Ahlquist, P., Noueiry, A. O., Lee, W. M., Kushner, D. B. and Dye, B. T. 2003. Host factors in positive-strand RNA virus genome replication. J. Virol. 77: 8181-8186. https://doi.org/10.1128/JVI.77.15.8181-8186.2003
  2. Ali, Z., Abul-Faraj, A., Piatek, M. and Mahfouz, M. M. 2015. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav. 10: e1044191. https://doi.org/10.1080/15592324.2015.1044191
  3. Amari, K., Boutant, E., Hofmann, C., Schmitt-Keichinger, C., Fernandez-Calvino, L., Didier, P. et al. 2010. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog. 6: e1001119. https://doi.org/10.1371/journal.ppat.1001119
  4. Amari, K., Di Donato, M., Dolja, V. V. and Heinlein, M. 2014. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog. 10: e1004448. https://doi.org/10.1371/journal.ppat.1004448
  5. Annamalai, P. and Rao, A. L. 2006. Delivery and expression of functional viral RNA genomes in planta by agroinfiltration. Curr. Protoc. Microbiol. 16: B.2.1-B.2.15.
  6. Aouida, M., Piatek, M. J., Bangarusamy, D. K. and Mahfouz, M. M. 2014. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr. Genet. 60: 61-74. https://doi.org/10.1007/s00294-013-0412-z
  7. Aouida, M., Eid, A., Ali, Z., Cradick, T., Lee, C., Deshmukh, H. et al. 2015a. Efficient fdCas9 synthetic endonuclease with improved specificity for precise genome engineering. PLoS One 10: e0133373. https://doi.org/10.1371/journal.pone.0133373
  8. Aouida, M., Li, L., Mahjoub, A., Alshareef, S., Ali, Z., Piatek, A. et al. 2015b. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J. Biosci. Bioeng. 120: 364-371. https://doi.org/10.1016/j.jbiosc.2015.02.017
  9. Ashby, J., Boutant, E., Seemanpillai, M., Groner, A., Sambade, A., Ritzenthaler, C. et al. 2006. Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J. Virol. 80: 8329-8344. https://doi.org/10.1128/JVI.00540-06
  10. Barakate, A. and Stephens, J. 2016. An overview of CRISPR-based tools and their improvements: New opportunities in understanding plant-pathogen interactions for better crop protection. Front. Plant Sci. 7: 765.
  11. Barrangou, R. and Marraffini, L. A. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 54: 234-244. https://doi.org/10.1016/j.molcel.2014.03.011
  12. Beauchemin, C., Boutet, N. and Laliberte, J. F. 2007. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in Planta. J. Virol. 81: 775-782. https://doi.org/10.1128/JVI.01277-06
  13. Belov, G. A. and van Kuppeveld, F. J. 2012. (+)RNA viruses rewire cellular pathways to build replication organelles. Curr. Opin. Virol. 2: 740-747. https://doi.org/10.1016/j.coviro.2012.09.006
  14. Blanc, S., Lopez-Moya, J. J., Wang, R., Garcia-Lampasona, S., Thornbury, D. W. and Pirone, T. P. 1997. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231: 141-147. https://doi.org/10.1006/viro.1997.8521
  15. Carrasco, J. L., Ancillo, G., Castello, M. J. and Vera, P. 2005. A novel DNA-binding motif, hallmark of a new family of plant transcription factors. Plant Physiol. 137: 602-606. https://doi.org/10.1104/pp.104.056002
  16. Castello, M. J., Carrasco, J. L. and Vera, P. 2010. DNA-binding protein phosphatase AtDBP1 mediates susceptibility to two potyviruses in Arabidopsis. Plant Physiol. 153: 1521-1525. https://doi.org/10.1104/pp.110.158923
  17. Cavatorta, J., Perez, K. W., Gray, S. M., Van Eck, J., Yeam, I. and Jahn, M. 2011. Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9: 1014-1021. https://doi.org/10.1111/j.1467-7652.2011.00622.x
  18. Cermak, T., Curtin, S. J., Gil-Humanes, J., Cegan, R., Kono, T. J. Y., Konecna, E. et al. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29: 1196-1217. https://doi.org/10.1105/tpc.16.00922
  19. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M. et al. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17: 1140-1153. https://doi.org/10.1111/mpp.12375
  20. Cheng, X., Li, F., Cai, J., Chen, W., Zhao, N., Sun, Y. et al. 2015. Artificial TALE as a convenient protein platform for engineering broadspectrum resistance to begomoviruses. Viruses 7: 4772-4782. https://doi.org/10.3390/v7082843
  21. Choi, S. H., Nakahara, K. S., Andrade, M. and Uyeda, I. 2012. Characterization of the recessive resistance gene cyv1 of Pisum sativum against Clover yellow vein virus. J. Gen. Plant Pathol. 78: 269-276. https://doi.org/10.1007/s10327-012-0383-9
  22. Clement, M., Leonhardt, N., Droillard, M. J., Reiter, I., Montillet, J. L., Genty, B. et al. 2011. The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol. 156: 1481-1492. https://doi.org/10.1104/pp.111.174425
  23. Curtin, S. J., Zhang, F., Sander, J. D., Haun, W. J., Starker, C., Baltes, N. J. et al. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 156: 466-473. https://doi.org/10.1104/pp.111.172981
  24. de Castro, I.F., Volonte, L. and Risco, C. 2013. Virus factories: biogenesis and structural design. Cell Microbiol. 15: 24-34. https://doi.org/10.1111/cmi.12029
  25. den Boon, J.A., Diaz, A. and Ahlquist, P. 2010. Cytoplasmic viral replication complexes. Cell Host Microbe 8: 77-85. https://doi.org/10.1016/j.chom.2010.06.010
  26. Diaz, A. and Wang, X. 2014. Bromovirus-induced remodeling of host membranes during viral RNA replication. Curr. Opin. Virol. 9: 104-110. https://doi.org/10.1016/j.coviro.2014.09.018
  27. Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M. A. 2004. Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5: 223-233. https://doi.org/10.1111/j.1364-3703.2004.00223.x
  28. Diez, J., Ishikawa, M., Kaido, M. and Ahlquist, P. 2000. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl. Acad. Sci. U.S.A. 97: 3913-3918. https://doi.org/10.1073/pnas.080072997
  29. Doudna, J. A. and Charpentier, E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096. https://doi.org/10.1126/science.1258096
  30. Dunoyer, P., Thomas, C., Harrison, S., Revers, F. and Maule, A., 2004. A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg. J. Virol. 78: 2301-2309. https://doi.org/10.1128/JVI.78.5.2301-2309.2004
  31. Feng, Z., Xue, F., Xu, M., Chen, X., Zhao, W., Garcia-Murria, M.J. et al. 2016. The ER-membrane transport system is critical for intercellular trafficking of the NSm movement protein and tomato spotted wilt tospovirus. PLoS Pathog. 12: e1005443. https://doi.org/10.1371/journal.ppat.1005443
  32. Fraser, R. S. S. 1990. The genetics of resistance to plant viruses. Annu. Rev. Phytopathol. 28: 179-200. https://doi.org/10.1146/annurev.py.28.090190.001143
  33. Gancarz, B. L., Hao, L., He, Q., Newton, M. A. and Ahlquist, P. 2011. Systematic identification of novel, essential host genes affecting bromovirus RNA replication. PLoS One. 6: e23988. https://doi.org/10.1371/journal.pone.0023988
  34. Gao, Z., Johansen, E., Eyers, S., Thomas, C. L., Noel Ellis, T. H. and Maule, A. J. 2004. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 40: 376-385. https://doi.org/10.1111/j.1365-313X.2004.02215.x
  35. Gazo, B. M., Murphy, P., Gatchel, J. R. and Browning, K. S. 2004. A novel interaction of Cap-binding protein complexes eukaryotic initiation factor (eIF) 4F and eIF(iso)4F with a region in the 3'-untranslated region of satellite tobacco necrosis virus. J. Biol. Chem. 279: 13584-13592. https://doi.org/10.1074/jbc.M311361200
  36. Giner, A., Pascual, L., Bourgeois, M., Gyetvai, G., Rios, P., Pico, B. et al. 2017. A mutation in the melon vacuolar protein sorting 41prevents systemic infection of cucumber mosaic virus. Sci. Rep. 7: 10471. https://doi.org/10.1038/s41598-017-10783-3
  37. Hart, J. P. and Griffiths, P. D. 2013. A series of eIF4E alleles at the Bc-3 locus are associated with recessive resistance to clover yellow vein virus in common bean. Theor. Appl. Genet. 126: 2849-2863. https://doi.org/10.1007/s00122-013-2176-8
  38. Hashimoto, M., Neriya, Y., Yamaji, Y. and Namba, S. 2016a. Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front. Microbiol. 7: 1695.
  39. Hashimoto, M., Neriya, Y., Keima, T., Iwabuchi, N., Koinuma, H., Hagiwara-Komoda, Y. et al. 2016b. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. Plant J. 88: 120-131. https://doi.org/10.1111/tpj.13265
  40. Heinlein, M. 2015. Plasmodesmata: channels for viruses on the move. Methods Mol. Biol. 1217: 25-52. https://doi.org/10.1007/978-1-4939-1523-1_2
  41. Hilliker, A., Gao, Z., Jankowsky, E. and Parker, R. 2011. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol. Cell. 43: 962-972. https://doi.org/10.1016/j.molcel.2011.08.008
  42. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L. et al. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180-183. https://doi.org/10.1038/415180a
  43. Hofinger, B. J., Russell, J. R., Bass, C. G., Baldwin, T., dos Reis, M., Hedley, P. E. et al. 2011. An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol. Ecol. 20: 3653-3668. https://doi.org/10.1111/j.1365-294X.2011.05201.x
  44. Ishikawa, M., Obata, F., Kumagai, T. and Ohno T. 1991. Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Mol. Gen. Genet. 230: 33-38. https://doi.org/10.1007/BF00290647
  45. Ishikawa, M., Naito, S. and Ohno, T. 1993. Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J. Virol. 67: 5328-5338. https://doi.org/10.1128/JVI.67.9.5328-5338.1993
  46. Jiang, J. and Laliberte, J. F. 2011. The genome-linked protein VPg of plant viruses-a protein with many partners. Curr. Opin. Virol. 1: 347-354. https://doi.org/10.1016/j.coviro.2011.09.010
  47. Jiang, J., Patarroyo, C., Garcia Cabanillas, D., Zheng, H. and Laliberte, J. F. 2015. The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J. Virol. 89: 6695-6710. https://doi.org/10.1128/JVI.00503-15
  48. Julio, E., Cotucheau, J., Decorps, C., Volpatti, R., Sentenac, C., Candresse, T. et al. 2015. A eukaryotic translation initiation factor 4E (eIF4E) is responsible for the "va" tobacco recessive resistance to potyviruses. Plant Mol. Biol. Rep. 33: 609-623. https://doi.org/10.1007/s11105-014-0775-4
  49. Jungkunz, I., Link, K., Vogel, F., Voll, L. M., Sonnewald, S. and Sonnewald, U. 2011. AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. Plant J. 66: 983-995. https://doi.org/10.1111/j.1365-313X.2011.04558.x
  50. Kang, B. C., Yeam, I. and Jahn, M. M. 2005. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43: 581-621. https://doi.org/10.1146/annurev.phyto.43.011205.141140
  51. Kang, B. C., Yeam, I., Li, H., Perez, K. W. and Jahn, M. M. 2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol. J. 5: 526-536. https://doi.org/10.1111/j.1467-7652.2007.00262.x
  52. Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24: 447-463. https://doi.org/10.1146/annurev.ge.24.120190.002311
  53. Kumar, S., Dubey, A. K., Karmakar, R., Kini, K. R., Mathew, M. K. and Prakash, H. S. 2012. Inhibition of TMV multiplication by siRNA constructs against TOM1 and TOM3 genes of Capsicum annuum. J. Virol. Methods 186: 78-85. https://doi.org/10.1016/j.jviromet.2012.07.014
  54. Kushner, D. B., Lindenbach, B. D., Grdzelishvili, V. Z., Noueiry, A. O., Paul, S. M. and Ahlquist, P. 2003. Systematic, genome-wide identification of host genes affecting replication of a positivestrand RNA virus. Proc. Natl. Acad. Sci. U.S.A. 100: 15764-15769. https://doi.org/10.1073/pnas.2536857100
  55. Langner, T., Kamoun, S. and Belhaj, K. 2018. CRISPR crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 56: 479-512. https://doi.org/10.1146/annurev-phyto-080417-050158
  56. Lee, M. W. and Yang, Y. 2006. Transient expression assay by agroinfiltration of leaves. Methods Mol. Biol. 323: 225-229.
  57. Legg, J. P., Shirima, R., Tajebe, L. S., Guastella, D., Boniface, S., Jeremiah, S. et al. 2014. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag. Sci. 70: 1446-1453. https://doi.org/10.1002/ps.3793
  58. Lellis, A. D., Kasschau, K. D., Whitham, S. A. and Carrington, J. C. 2002. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr. Biol. 12: 1046-1051. https://doi.org/10.1016/S0960-9822(02)00898-9
  59. Lewis, J. D. and Lazarowitz, S. G. 2010. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cellto-cell transport. Proc. Natl. Acad. Sci. U.S.A. 107: 2491-2496. https://doi.org/10.1073/pnas.0909080107
  60. Lin, J. W., Ding, M. P., Hsu, Y. H. and Tsai, C. H. 2007. Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Res. 35: 424-432. https://doi.org/10.1093/nar/gkl1061
  61. Loebenstein, G. and Katis, N. 2014. Control of plant virus diseases seed-propagated crops. Preface. Adv. Virus Res. 90: xi. https://doi.org/10.1016/B978-0-12-801246-8.09985-6
  62. Maia, I. G., Haenni, A. and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. J. Gen. Virol. 77: 1335-1341. https://doi.org/10.1099/0022-1317-77-7-1335
  63. Mann, M., Hendrickson, R. C. and Pandey, A. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70: 437-473. https://doi.org/10.1146/annurev.biochem.70.1.437
  64. Martinez-Silva, A. V., Aguirre-Martinez, C., Flores-Tinoco, C. E., Alejandri-Ramirez, N. D. and Dinkova, T. D. 2012. Translation initiation factor AteIF(iso)4E is involved in selective mRNA translation in Arabidopsis thaliana seedlings. PLoS One 7: e31606. https://doi.org/10.1371/journal.pone.0031606
  65. Maule, A. J. 2008. Plasmodesmata: structure, function and biogenesis. Curr. Opin. Plant Biol. 11: 680-686. https://doi.org/10.1016/j.pbi.2008.08.002
  66. Mayberry, L. K., Allen, M. L., Nitka, K. R., Campbell, L., Murphy, P. A. and Browning, K. S. 2011. Plant cap-binding complexes eukaryotic initiation factors eIF4F and eIFISO4F: molecular specificity of subunit binding. J. Biol. Chem. 286: 42566-42574. https://doi.org/10.1074/jbc.M111.280099
  67. Nagy, P. D. 2016. Tombusvirus-Host interactions: Co-Opted evolutionarily conserved host factors take center court. Annu. Rev. Virol. 3: 491-515. https://doi.org/10.1146/annurev-virology-110615-042312
  68. Nagy, P. D. and Pogany, J. 2011. The dependence of viral RNA replication on co-opted host factors. Nat. Rev. Microbiol. 10: 137-149. https://doi.org/10.1038/nrmicro2692
  69. Nagy, P. D. and Richardson, C. D. 2012. Viral replication--in search of the perfect host. Curr. Opin. Virol. 2: 663-668. https://doi.org/10.1016/j.coviro.2012.11.001
  70. Nicaise, V., German-Retana, S., Sanjuan, R., Dubrana, M. P., Mazier, M., Maisonneuve, B. et al. 2003. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol. 132: 1272-1282. https://doi.org/10.1104/pp.102.017855
  71. Nicaise, V., Gallois, J. L., Chafiai, F., Allen, L. M., Schurdi-Levraud, V., Browning, K. S. et al. 2007. Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett. 581: 1041-1046. https://doi.org/10.1016/j.febslet.2007.02.007
  72. Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B. et al. 2006. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48: 452-462. https://doi.org/10.1111/j.1365-313X.2006.02885.x
  73. Nishikiori, M., Mori, M., Dohi, K., Okamura, H., Katoh, E., Naito, S. et al. 2011. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication. PLoS Pathog. 7: e1002409. https://doi.org/10.1371/journal.ppat.1002409
  74. Noueiry, A. O., Chen, J. and Ahlquist, P. 2000. A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc. Natl. Acad. Sci. U.S.A. 97: 12985-12990. https://doi.org/10.1073/pnas.240460897
  75. Noueiry, A. O., Diez, J., Falk, S. P., Chen, J. and Ahlquist, P. 2003. Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation. Mol. Cell Biol. 23: 4094-4106. https://doi.org/10.1128/MCB.23.12.4094-4106.2003
  76. Ohshima, K., Taniyama, T., Yamanaka, T., Ishikawa, M. and Naito, S., 1998. Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology 243: 472-481. https://doi.org/10.1006/viro.1998.9078
  77. Orjuela, J., Deless, E. F., Kolade, O., Cheron, S., Ghesquiere, A. and Albar, L. 2013. A recessive resistance to rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. Mol. Plant-Microbe Interact. 26: 1455-1463. https://doi.org/10.1094/MPMI-05-13-0127-R
  78. Ouibrahim, L., Mazier, M., Estevan, J., Pagny, G., Decroocq, V., Desbiez, C. et al. 2014. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J. 79: 705-716. https://doi.org/10.1111/tpj.12586
  79. Ouko, M. O., Sambade, A., Brandner, K., Niehl, A., Pena, E., Ahad, A. et al. 2010. Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J. 62: 829-839. https://doi.org/10.1111/j.1365-313X.2010.04195.x
  80. Patrick, R. M., Mayberry, L. K., Choy, G., Woodard, L. E., Liu, J. S., White, A. et al. 2014. Two Arabidopsis loci encode novel eukaryotic initiation factor 4E isoforms that are functionally distinct from the conserved plant eukaryotic initiation factor 4E. Plant Physiol. 164: 1820-1830. https://doi.org/10.1104/pp.113.227785
  81. Perez, K., Yeam, I., Kang, B. C., Ripoll, D. R., Kim, J., Murphy, J. F. et al. 2012. Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg. Mol. Plant-Microbe Interact. 25: 1562-1573. https://doi.org/10.1094/MPMI-04-12-0091-R
  82. Piatek, A. and Mahfouz, M. M. 2017. Targeted genome regulation via synthetic programmable transcriptional regulators. Crit. Rev. Biotechnol. 37: 429-440. https://doi.org/10.3109/07388551.2016.1165180
  83. Poque, S., Pagny, G., Ouibrahim, L., Chague, A., Eyquard, J. P., Caballero, M. et al. 2015. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC Plant Biol. 15: 159. https://doi.org/10.1186/s12870-015-0559-5
  84. Pyott, D. E., Sheehan, E. and Molnar, A. 2016. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17: 1276-1288. https://doi.org/10.1111/mpp.12417
  85. Quetier, F. 2016. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing. Plant Sci. 242: 65-76. https://doi.org/10.1016/j.plantsci.2015.09.003
  86. Ransom-Hodgkins, W. D. 2009. The application of expression analysis in elucidating the eukaryotic elongation factor one alpha gene family in Arabidopsis thaliana. Mol. Genet. Genomics 281: 391-405. https://doi.org/10.1007/s00438-008-0418-2
  87. Robaglia, C. and Caranta, C. 2006. Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 11: 40-45. https://doi.org/10.1016/j.tplants.2005.11.004
  88. Roudet-Tavert, G., German-Retana, S., Delaunay, T., Delecolle, B., Candresse, T. and Le Gall, O. 2002. Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. J. Gen. Virol. 83: 1765-1770. https://doi.org/10.1099/0022-1317-83-7-1765
  89. Roudet-Tavert, G., Michon, T., Walter, J., Delaunay, T., Redondo, E. and Le Gall, O. 2007. Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J. Gen. Virol. 88: 1029-1033. https://doi.org/10.1099/vir.0.82501-0
  90. Ruffel, S., Dussault, M. H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32: 1067-1075. https://doi.org/10.1046/j.1365-313X.2002.01499.x
  91. Ruffel, S., Gallois, J. L., Lesage, M. L. and Caranta, C. 2005. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol. Genet. Genomics 274: 346-353. https://doi.org/10.1007/s00438-005-0003-x
  92. Ruffel, S., Gallois, J. L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. 2006. Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Gen. Virol. 87: 2089-2098. https://doi.org/10.1099/vir.0.81817-0
  93. Sambade, A., Brandner, K., Hofmann, C., Seemanpillai, M., Mutterer, J. and Heinlein, M. 2008. Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9: 2073-2088. https://doi.org/10.1111/j.1600-0854.2008.00824.x
  94. Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. 2005. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579: 1167-1171. https://doi.org/10.1016/j.febslet.2004.12.086
  95. Seo, J. K., Choi, H. S. and Kim, K. H. 2016. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci. Rep. 6: 22436. https://doi.org/10.1038/srep22436
  96. Stella, S. and Montoya, G. 2016. The genome editing revolution: A CRISPR-Cas TALE off-target story. Bioessays 38: S4-S13. https://doi.org/10.1002/bies.201670903
  97. Truniger, V. and Aranda, M. A. 2009. Recessive resistance to plant viruses. Adv. Virus Res. 75: 119-159. https://doi.org/10.1016/S0065-3527(09)07504-6
  98. Tsujimoto, Y., Numaga, T., Ohshima, K., Yano, M. A., Ohsawa, R., Goto, D. B. et al. 2003. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 22: 335-343. https://doi.org/10.1093/emboj/cdg034
  99. Uchiyama, A., Shimada-Beltran, H., Levy, A., Zheng, J. Y., Javia, P. A. and Lazarowitz, S. G. 2014. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses. Front. Plant Sci. 5: 584.
  100. Vaghchhipawala, Z., Rojas, C. M., Senthil-Kumar, M. and Mysore, K. S. 2011. Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. Methods Mol. Biol. 678: 65-76. https://doi.org/10.1007/978-1-60761-682-5_6
  101. Vasilescu, J. and Figeys, D. 2006. Mapping protein-protein interactions by mass spectrometry. Curr. Opin. Biotechnol. 17: 394-399. https://doi.org/10.1016/j.copbio.2006.06.008
  102. Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N. and Miller, W. A. 2012. Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog. 8: e1002639. https://doi.org/10.1371/journal.ppat.1002639
  103. Wang, A. 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53: 45-66. https://doi.org/10.1146/annurev-phyto-080614-120001
  104. Wang, A. and Krishnaswamy, S. 2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13: 795-803. https://doi.org/10.1111/j.1364-3703.2012.00791.x
  105. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32: 947-951. https://doi.org/10.1038/nbt.2969
  106. Whitham, S. A., Yamamoto, M. L. and Carrington, J. C. 1999. Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 96: 772-777. https://doi.org/10.1073/pnas.96.2.772
  107. Wittmann, S., Chatel, H., Fortin, M. G. and Laliberte, J. F. 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234: 84-92. https://doi.org/10.1006/viro.1997.8634
  108. Wright, A. V., Nunez, J. K. and Doudna, J. A. 2016. Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering. Cell 164: 29-44. https://doi.org/10.1016/j.cell.2015.12.035
  109. Yamanaka, T., Ohta, T., Takahashi, M., Meshi, T., Schmidt, R., Dean, C. et al. 2000. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. Natl. Acad. Sci. U.S.A. 97: 10107-10112. https://doi.org/10.1073/pnas.170295097
  110. Yamanaka, T., Imai, T., Satoh, R., Kawashima, A., Takahashi, M., Tomita, K. et al. 2002. Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J. Virol. 76: 2491-2497. https://doi.org/10.1128/jvi.76.5.2491-2497.2002
  111. Yang, P., Perovic, D., HabekuB, A., Zhou, R., Graner, A., Ordon, F. et al. 2013. Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV). Mol. Breed. 32: 27-37. https://doi.org/10.1007/s11032-013-9842-z
  112. Yang, P., Lupken, T., Habekuss, A., Hensel, G., Steuernagel, B., Kilian, B. et al. 2014. PROTEIN DISULFIDE ISOMERASE LIKE 5-1 is a susceptibility factor to plant viruses. Proc. Natl. Acad. Sci. U.S.A. 111: 2104-2109. https://doi.org/10.1073/pnas.1320362111
  113. Ye, C., Dickman, M. B., Whitham, S. A., Payton, M. and Verchot, J. 2011. The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol. 156: 741-755. https://doi.org/10.1104/pp.111.174110
  114. Yoshii, M., Yoshioka, N., Ishikawa, M. and Naito, S. 1998a. Isolation of an Arabidopsis thaliana mutant in which accumulation of cucumber mosaic virus coat protein is delayed. Plant J. 13: 211-219. https://doi.org/10.1046/j.1365-313X.1998.00024.x
  115. Yoshii, M., Yoshioka, N., Ishikawa, M. and Naito, S. 1998b. Isolation of an Arabidopsis thaliana mutant in which the multiplication of both cucumber mosaic virus and turnip crinkle virus is affected. J. Virol. 72: 8731-8737. https://doi.org/10.1128/JVI.72.11.8731-8737.1998
  116. Yoshii, M., Nishikiori, M., Tomita, K., Yoshioka, N., Kozuka, R., Naito, S. et al. 2004. The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J. Virol. 78: 6102-6111. https://doi.org/10.1128/JVI.78.12.6102-6111.2004
  117. Yoshii, M., Shimizu, T., Yamazaki, M., Higashi, T., Miyao, A., Hirochika, H. et al. 2009. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to rice dwarf virus. Plant J. 57: 615-625. https://doi.org/10.1111/j.1365-313X.2008.03712.x
  118. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P. et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771. https://doi.org/10.1016/j.cell.2015.09.038
  119. Zhang, L., Chen, H., Brandizzi, F., Verchot, J. and Wang, A. 2015a. The UPR branch IRE1-bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLoS Genet. 11: e1005164. https://doi.org/10.1371/journal.pgen.1005164
  120. Zhang, X. C., Millet, Y. A., Cheng, Z., Bush, J. and Ausubel, F. M. 2015b. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. Nat. Plants 1: 15049. https://doi.org/10.1038/nplants.2015.49
  121. Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y. et al. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35: 438-440. https://doi.org/10.1038/nbt.3811
  122. Zou, L. J., Deng, X. G., Han, X. Y., Tan, W. R., Zhu, L. J., Xi, D. H. et al. 2016. Role of transcription factor HAT1 in modulating arabidopsis thaliana response to cucumber mosaic virus. Plant Cell Physiol. 57: 1879-1889. https://doi.org/10.1093/pcp/pcw109