Fig. 1. Schematic representation of dominant and recessive resistance in a plant-virus pathosystem. A virus-encoded protein can act as an avirulence factor that is recognized by a host-encoded resistance (R) protein. The interaction between a viral avirulence factor and a host R protein triggers down-stream defense responses, resulting in activation of dominant resistance. Plant viruses are obligate parasites and require various host-encoded proteins (host factors) to complete the steps of their life cycle. Therefore, the absence of appropriate host factors or inhibition of the interactions between viral proteins and corresponding host factors may confer recessive resistance.
Fig. 2. Simplified overview for generation of transgene-free, genome-edited plants using CRISPR/Cas9. Arabidopsis plants can be transformed by Agrobacterium carrying a CRISPR/Cas9 construct. Targeted mutagenesis events can occur in transgenic T1 plants. In T2 plants, the T-DNA segregates in a Mendelian fashion for single-locus lines, and thereby transgene-free, homozygously mutated plants can occur in T2.
Table 1. Antiviral recessive resistance genes associated with translation initiation
Table 2. The genetic resources for recessive resistance found in loss-of-susceptibility mutants and naturally occurring resistant cultivars
Table 2. Continued
참고문헌
- Ahlquist, P., Noueiry, A. O., Lee, W. M., Kushner, D. B. and Dye, B. T. 2003. Host factors in positive-strand RNA virus genome replication. J. Virol. 77: 8181-8186. https://doi.org/10.1128/JVI.77.15.8181-8186.2003
- Ali, Z., Abul-Faraj, A., Piatek, M. and Mahfouz, M. M. 2015. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav. 10: e1044191. https://doi.org/10.1080/15592324.2015.1044191
- Amari, K., Boutant, E., Hofmann, C., Schmitt-Keichinger, C., Fernandez-Calvino, L., Didier, P. et al. 2010. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog. 6: e1001119. https://doi.org/10.1371/journal.ppat.1001119
- Amari, K., Di Donato, M., Dolja, V. V. and Heinlein, M. 2014. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog. 10: e1004448. https://doi.org/10.1371/journal.ppat.1004448
- Annamalai, P. and Rao, A. L. 2006. Delivery and expression of functional viral RNA genomes in planta by agroinfiltration. Curr. Protoc. Microbiol. 16: B.2.1-B.2.15.
- Aouida, M., Piatek, M. J., Bangarusamy, D. K. and Mahfouz, M. M. 2014. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr. Genet. 60: 61-74. https://doi.org/10.1007/s00294-013-0412-z
- Aouida, M., Eid, A., Ali, Z., Cradick, T., Lee, C., Deshmukh, H. et al. 2015a. Efficient fdCas9 synthetic endonuclease with improved specificity for precise genome engineering. PLoS One 10: e0133373. https://doi.org/10.1371/journal.pone.0133373
- Aouida, M., Li, L., Mahjoub, A., Alshareef, S., Ali, Z., Piatek, A. et al. 2015b. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J. Biosci. Bioeng. 120: 364-371. https://doi.org/10.1016/j.jbiosc.2015.02.017
- Ashby, J., Boutant, E., Seemanpillai, M., Groner, A., Sambade, A., Ritzenthaler, C. et al. 2006. Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J. Virol. 80: 8329-8344. https://doi.org/10.1128/JVI.00540-06
- Barakate, A. and Stephens, J. 2016. An overview of CRISPR-based tools and their improvements: New opportunities in understanding plant-pathogen interactions for better crop protection. Front. Plant Sci. 7: 765.
- Barrangou, R. and Marraffini, L. A. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 54: 234-244. https://doi.org/10.1016/j.molcel.2014.03.011
- Beauchemin, C., Boutet, N. and Laliberte, J. F. 2007. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in Planta. J. Virol. 81: 775-782. https://doi.org/10.1128/JVI.01277-06
- Belov, G. A. and van Kuppeveld, F. J. 2012. (+)RNA viruses rewire cellular pathways to build replication organelles. Curr. Opin. Virol. 2: 740-747. https://doi.org/10.1016/j.coviro.2012.09.006
- Blanc, S., Lopez-Moya, J. J., Wang, R., Garcia-Lampasona, S., Thornbury, D. W. and Pirone, T. P. 1997. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231: 141-147. https://doi.org/10.1006/viro.1997.8521
- Carrasco, J. L., Ancillo, G., Castello, M. J. and Vera, P. 2005. A novel DNA-binding motif, hallmark of a new family of plant transcription factors. Plant Physiol. 137: 602-606. https://doi.org/10.1104/pp.104.056002
- Castello, M. J., Carrasco, J. L. and Vera, P. 2010. DNA-binding protein phosphatase AtDBP1 mediates susceptibility to two potyviruses in Arabidopsis. Plant Physiol. 153: 1521-1525. https://doi.org/10.1104/pp.110.158923
- Cavatorta, J., Perez, K. W., Gray, S. M., Van Eck, J., Yeam, I. and Jahn, M. 2011. Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9: 1014-1021. https://doi.org/10.1111/j.1467-7652.2011.00622.x
- Cermak, T., Curtin, S. J., Gil-Humanes, J., Cegan, R., Kono, T. J. Y., Konecna, E. et al. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29: 1196-1217. https://doi.org/10.1105/tpc.16.00922
- Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M. et al. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17: 1140-1153. https://doi.org/10.1111/mpp.12375
- Cheng, X., Li, F., Cai, J., Chen, W., Zhao, N., Sun, Y. et al. 2015. Artificial TALE as a convenient protein platform for engineering broadspectrum resistance to begomoviruses. Viruses 7: 4772-4782. https://doi.org/10.3390/v7082843
- Choi, S. H., Nakahara, K. S., Andrade, M. and Uyeda, I. 2012. Characterization of the recessive resistance gene cyv1 of Pisum sativum against Clover yellow vein virus. J. Gen. Plant Pathol. 78: 269-276. https://doi.org/10.1007/s10327-012-0383-9
- Clement, M., Leonhardt, N., Droillard, M. J., Reiter, I., Montillet, J. L., Genty, B. et al. 2011. The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol. 156: 1481-1492. https://doi.org/10.1104/pp.111.174425
- Curtin, S. J., Zhang, F., Sander, J. D., Haun, W. J., Starker, C., Baltes, N. J. et al. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 156: 466-473. https://doi.org/10.1104/pp.111.172981
- de Castro, I.F., Volonte, L. and Risco, C. 2013. Virus factories: biogenesis and structural design. Cell Microbiol. 15: 24-34. https://doi.org/10.1111/cmi.12029
- den Boon, J.A., Diaz, A. and Ahlquist, P. 2010. Cytoplasmic viral replication complexes. Cell Host Microbe 8: 77-85. https://doi.org/10.1016/j.chom.2010.06.010
- Diaz, A. and Wang, X. 2014. Bromovirus-induced remodeling of host membranes during viral RNA replication. Curr. Opin. Virol. 9: 104-110. https://doi.org/10.1016/j.coviro.2014.09.018
- Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M. A. 2004. Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5: 223-233. https://doi.org/10.1111/j.1364-3703.2004.00223.x
- Diez, J., Ishikawa, M., Kaido, M. and Ahlquist, P. 2000. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl. Acad. Sci. U.S.A. 97: 3913-3918. https://doi.org/10.1073/pnas.080072997
- Doudna, J. A. and Charpentier, E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096. https://doi.org/10.1126/science.1258096
- Dunoyer, P., Thomas, C., Harrison, S., Revers, F. and Maule, A., 2004. A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg. J. Virol. 78: 2301-2309. https://doi.org/10.1128/JVI.78.5.2301-2309.2004
- Feng, Z., Xue, F., Xu, M., Chen, X., Zhao, W., Garcia-Murria, M.J. et al. 2016. The ER-membrane transport system is critical for intercellular trafficking of the NSm movement protein and tomato spotted wilt tospovirus. PLoS Pathog. 12: e1005443. https://doi.org/10.1371/journal.ppat.1005443
- Fraser, R. S. S. 1990. The genetics of resistance to plant viruses. Annu. Rev. Phytopathol. 28: 179-200. https://doi.org/10.1146/annurev.py.28.090190.001143
- Gancarz, B. L., Hao, L., He, Q., Newton, M. A. and Ahlquist, P. 2011. Systematic identification of novel, essential host genes affecting bromovirus RNA replication. PLoS One. 6: e23988. https://doi.org/10.1371/journal.pone.0023988
- Gao, Z., Johansen, E., Eyers, S., Thomas, C. L., Noel Ellis, T. H. and Maule, A. J. 2004. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 40: 376-385. https://doi.org/10.1111/j.1365-313X.2004.02215.x
- Gazo, B. M., Murphy, P., Gatchel, J. R. and Browning, K. S. 2004. A novel interaction of Cap-binding protein complexes eukaryotic initiation factor (eIF) 4F and eIF(iso)4F with a region in the 3'-untranslated region of satellite tobacco necrosis virus. J. Biol. Chem. 279: 13584-13592. https://doi.org/10.1074/jbc.M311361200
- Giner, A., Pascual, L., Bourgeois, M., Gyetvai, G., Rios, P., Pico, B. et al. 2017. A mutation in the melon vacuolar protein sorting 41prevents systemic infection of cucumber mosaic virus. Sci. Rep. 7: 10471. https://doi.org/10.1038/s41598-017-10783-3
- Hart, J. P. and Griffiths, P. D. 2013. A series of eIF4E alleles at the Bc-3 locus are associated with recessive resistance to clover yellow vein virus in common bean. Theor. Appl. Genet. 126: 2849-2863. https://doi.org/10.1007/s00122-013-2176-8
- Hashimoto, M., Neriya, Y., Yamaji, Y. and Namba, S. 2016a. Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front. Microbiol. 7: 1695.
- Hashimoto, M., Neriya, Y., Keima, T., Iwabuchi, N., Koinuma, H., Hagiwara-Komoda, Y. et al. 2016b. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. Plant J. 88: 120-131. https://doi.org/10.1111/tpj.13265
- Heinlein, M. 2015. Plasmodesmata: channels for viruses on the move. Methods Mol. Biol. 1217: 25-52. https://doi.org/10.1007/978-1-4939-1523-1_2
- Hilliker, A., Gao, Z., Jankowsky, E. and Parker, R. 2011. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol. Cell. 43: 962-972. https://doi.org/10.1016/j.molcel.2011.08.008
- Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L. et al. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180-183. https://doi.org/10.1038/415180a
- Hofinger, B. J., Russell, J. R., Bass, C. G., Baldwin, T., dos Reis, M., Hedley, P. E. et al. 2011. An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol. Ecol. 20: 3653-3668. https://doi.org/10.1111/j.1365-294X.2011.05201.x
- Ishikawa, M., Obata, F., Kumagai, T. and Ohno T. 1991. Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Mol. Gen. Genet. 230: 33-38. https://doi.org/10.1007/BF00290647
- Ishikawa, M., Naito, S. and Ohno, T. 1993. Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J. Virol. 67: 5328-5338. https://doi.org/10.1128/JVI.67.9.5328-5338.1993
- Jiang, J. and Laliberte, J. F. 2011. The genome-linked protein VPg of plant viruses-a protein with many partners. Curr. Opin. Virol. 1: 347-354. https://doi.org/10.1016/j.coviro.2011.09.010
- Jiang, J., Patarroyo, C., Garcia Cabanillas, D., Zheng, H. and Laliberte, J. F. 2015. The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J. Virol. 89: 6695-6710. https://doi.org/10.1128/JVI.00503-15
- Julio, E., Cotucheau, J., Decorps, C., Volpatti, R., Sentenac, C., Candresse, T. et al. 2015. A eukaryotic translation initiation factor 4E (eIF4E) is responsible for the "va" tobacco recessive resistance to potyviruses. Plant Mol. Biol. Rep. 33: 609-623. https://doi.org/10.1007/s11105-014-0775-4
- Jungkunz, I., Link, K., Vogel, F., Voll, L. M., Sonnewald, S. and Sonnewald, U. 2011. AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. Plant J. 66: 983-995. https://doi.org/10.1111/j.1365-313X.2011.04558.x
- Kang, B. C., Yeam, I. and Jahn, M. M. 2005. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43: 581-621. https://doi.org/10.1146/annurev.phyto.43.011205.141140
- Kang, B. C., Yeam, I., Li, H., Perez, K. W. and Jahn, M. M. 2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol. J. 5: 526-536. https://doi.org/10.1111/j.1467-7652.2007.00262.x
- Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24: 447-463. https://doi.org/10.1146/annurev.ge.24.120190.002311
- Kumar, S., Dubey, A. K., Karmakar, R., Kini, K. R., Mathew, M. K. and Prakash, H. S. 2012. Inhibition of TMV multiplication by siRNA constructs against TOM1 and TOM3 genes of Capsicum annuum. J. Virol. Methods 186: 78-85. https://doi.org/10.1016/j.jviromet.2012.07.014
- Kushner, D. B., Lindenbach, B. D., Grdzelishvili, V. Z., Noueiry, A. O., Paul, S. M. and Ahlquist, P. 2003. Systematic, genome-wide identification of host genes affecting replication of a positivestrand RNA virus. Proc. Natl. Acad. Sci. U.S.A. 100: 15764-15769. https://doi.org/10.1073/pnas.2536857100
- Langner, T., Kamoun, S. and Belhaj, K. 2018. CRISPR crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 56: 479-512. https://doi.org/10.1146/annurev-phyto-080417-050158
- Lee, M. W. and Yang, Y. 2006. Transient expression assay by agroinfiltration of leaves. Methods Mol. Biol. 323: 225-229.
- Legg, J. P., Shirima, R., Tajebe, L. S., Guastella, D., Boniface, S., Jeremiah, S. et al. 2014. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag. Sci. 70: 1446-1453. https://doi.org/10.1002/ps.3793
- Lellis, A. D., Kasschau, K. D., Whitham, S. A. and Carrington, J. C. 2002. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr. Biol. 12: 1046-1051. https://doi.org/10.1016/S0960-9822(02)00898-9
- Lewis, J. D. and Lazarowitz, S. G. 2010. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cellto-cell transport. Proc. Natl. Acad. Sci. U.S.A. 107: 2491-2496. https://doi.org/10.1073/pnas.0909080107
- Lin, J. W., Ding, M. P., Hsu, Y. H. and Tsai, C. H. 2007. Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Res. 35: 424-432. https://doi.org/10.1093/nar/gkl1061
- Loebenstein, G. and Katis, N. 2014. Control of plant virus diseases seed-propagated crops. Preface. Adv. Virus Res. 90: xi. https://doi.org/10.1016/B978-0-12-801246-8.09985-6
- Maia, I. G., Haenni, A. and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. J. Gen. Virol. 77: 1335-1341. https://doi.org/10.1099/0022-1317-77-7-1335
- Mann, M., Hendrickson, R. C. and Pandey, A. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70: 437-473. https://doi.org/10.1146/annurev.biochem.70.1.437
- Martinez-Silva, A. V., Aguirre-Martinez, C., Flores-Tinoco, C. E., Alejandri-Ramirez, N. D. and Dinkova, T. D. 2012. Translation initiation factor AteIF(iso)4E is involved in selective mRNA translation in Arabidopsis thaliana seedlings. PLoS One 7: e31606. https://doi.org/10.1371/journal.pone.0031606
- Maule, A. J. 2008. Plasmodesmata: structure, function and biogenesis. Curr. Opin. Plant Biol. 11: 680-686. https://doi.org/10.1016/j.pbi.2008.08.002
- Mayberry, L. K., Allen, M. L., Nitka, K. R., Campbell, L., Murphy, P. A. and Browning, K. S. 2011. Plant cap-binding complexes eukaryotic initiation factors eIF4F and eIFISO4F: molecular specificity of subunit binding. J. Biol. Chem. 286: 42566-42574. https://doi.org/10.1074/jbc.M111.280099
- Nagy, P. D. 2016. Tombusvirus-Host interactions: Co-Opted evolutionarily conserved host factors take center court. Annu. Rev. Virol. 3: 491-515. https://doi.org/10.1146/annurev-virology-110615-042312
- Nagy, P. D. and Pogany, J. 2011. The dependence of viral RNA replication on co-opted host factors. Nat. Rev. Microbiol. 10: 137-149. https://doi.org/10.1038/nrmicro2692
- Nagy, P. D. and Richardson, C. D. 2012. Viral replication--in search of the perfect host. Curr. Opin. Virol. 2: 663-668. https://doi.org/10.1016/j.coviro.2012.11.001
- Nicaise, V., German-Retana, S., Sanjuan, R., Dubrana, M. P., Mazier, M., Maisonneuve, B. et al. 2003. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol. 132: 1272-1282. https://doi.org/10.1104/pp.102.017855
- Nicaise, V., Gallois, J. L., Chafiai, F., Allen, L. M., Schurdi-Levraud, V., Browning, K. S. et al. 2007. Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett. 581: 1041-1046. https://doi.org/10.1016/j.febslet.2007.02.007
- Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B. et al. 2006. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48: 452-462. https://doi.org/10.1111/j.1365-313X.2006.02885.x
- Nishikiori, M., Mori, M., Dohi, K., Okamura, H., Katoh, E., Naito, S. et al. 2011. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication. PLoS Pathog. 7: e1002409. https://doi.org/10.1371/journal.ppat.1002409
- Noueiry, A. O., Chen, J. and Ahlquist, P. 2000. A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc. Natl. Acad. Sci. U.S.A. 97: 12985-12990. https://doi.org/10.1073/pnas.240460897
- Noueiry, A. O., Diez, J., Falk, S. P., Chen, J. and Ahlquist, P. 2003. Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation. Mol. Cell Biol. 23: 4094-4106. https://doi.org/10.1128/MCB.23.12.4094-4106.2003
- Ohshima, K., Taniyama, T., Yamanaka, T., Ishikawa, M. and Naito, S., 1998. Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology 243: 472-481. https://doi.org/10.1006/viro.1998.9078
- Orjuela, J., Deless, E. F., Kolade, O., Cheron, S., Ghesquiere, A. and Albar, L. 2013. A recessive resistance to rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. Mol. Plant-Microbe Interact. 26: 1455-1463. https://doi.org/10.1094/MPMI-05-13-0127-R
- Ouibrahim, L., Mazier, M., Estevan, J., Pagny, G., Decroocq, V., Desbiez, C. et al. 2014. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J. 79: 705-716. https://doi.org/10.1111/tpj.12586
- Ouko, M. O., Sambade, A., Brandner, K., Niehl, A., Pena, E., Ahad, A. et al. 2010. Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J. 62: 829-839. https://doi.org/10.1111/j.1365-313X.2010.04195.x
- Patrick, R. M., Mayberry, L. K., Choy, G., Woodard, L. E., Liu, J. S., White, A. et al. 2014. Two Arabidopsis loci encode novel eukaryotic initiation factor 4E isoforms that are functionally distinct from the conserved plant eukaryotic initiation factor 4E. Plant Physiol. 164: 1820-1830. https://doi.org/10.1104/pp.113.227785
- Perez, K., Yeam, I., Kang, B. C., Ripoll, D. R., Kim, J., Murphy, J. F. et al. 2012. Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg. Mol. Plant-Microbe Interact. 25: 1562-1573. https://doi.org/10.1094/MPMI-04-12-0091-R
- Piatek, A. and Mahfouz, M. M. 2017. Targeted genome regulation via synthetic programmable transcriptional regulators. Crit. Rev. Biotechnol. 37: 429-440. https://doi.org/10.3109/07388551.2016.1165180
- Poque, S., Pagny, G., Ouibrahim, L., Chague, A., Eyquard, J. P., Caballero, M. et al. 2015. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC Plant Biol. 15: 159. https://doi.org/10.1186/s12870-015-0559-5
- Pyott, D. E., Sheehan, E. and Molnar, A. 2016. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17: 1276-1288. https://doi.org/10.1111/mpp.12417
- Quetier, F. 2016. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing. Plant Sci. 242: 65-76. https://doi.org/10.1016/j.plantsci.2015.09.003
- Ransom-Hodgkins, W. D. 2009. The application of expression analysis in elucidating the eukaryotic elongation factor one alpha gene family in Arabidopsis thaliana. Mol. Genet. Genomics 281: 391-405. https://doi.org/10.1007/s00438-008-0418-2
- Robaglia, C. and Caranta, C. 2006. Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 11: 40-45. https://doi.org/10.1016/j.tplants.2005.11.004
- Roudet-Tavert, G., German-Retana, S., Delaunay, T., Delecolle, B., Candresse, T. and Le Gall, O. 2002. Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. J. Gen. Virol. 83: 1765-1770. https://doi.org/10.1099/0022-1317-83-7-1765
- Roudet-Tavert, G., Michon, T., Walter, J., Delaunay, T., Redondo, E. and Le Gall, O. 2007. Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J. Gen. Virol. 88: 1029-1033. https://doi.org/10.1099/vir.0.82501-0
- Ruffel, S., Dussault, M. H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32: 1067-1075. https://doi.org/10.1046/j.1365-313X.2002.01499.x
- Ruffel, S., Gallois, J. L., Lesage, M. L. and Caranta, C. 2005. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol. Genet. Genomics 274: 346-353. https://doi.org/10.1007/s00438-005-0003-x
- Ruffel, S., Gallois, J. L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. 2006. Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Gen. Virol. 87: 2089-2098. https://doi.org/10.1099/vir.0.81817-0
- Sambade, A., Brandner, K., Hofmann, C., Seemanpillai, M., Mutterer, J. and Heinlein, M. 2008. Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9: 2073-2088. https://doi.org/10.1111/j.1600-0854.2008.00824.x
- Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. 2005. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579: 1167-1171. https://doi.org/10.1016/j.febslet.2004.12.086
- Seo, J. K., Choi, H. S. and Kim, K. H. 2016. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci. Rep. 6: 22436. https://doi.org/10.1038/srep22436
- Stella, S. and Montoya, G. 2016. The genome editing revolution: A CRISPR-Cas TALE off-target story. Bioessays 38: S4-S13. https://doi.org/10.1002/bies.201670903
- Truniger, V. and Aranda, M. A. 2009. Recessive resistance to plant viruses. Adv. Virus Res. 75: 119-159. https://doi.org/10.1016/S0065-3527(09)07504-6
- Tsujimoto, Y., Numaga, T., Ohshima, K., Yano, M. A., Ohsawa, R., Goto, D. B. et al. 2003. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 22: 335-343. https://doi.org/10.1093/emboj/cdg034
- Uchiyama, A., Shimada-Beltran, H., Levy, A., Zheng, J. Y., Javia, P. A. and Lazarowitz, S. G. 2014. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses. Front. Plant Sci. 5: 584.
- Vaghchhipawala, Z., Rojas, C. M., Senthil-Kumar, M. and Mysore, K. S. 2011. Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. Methods Mol. Biol. 678: 65-76. https://doi.org/10.1007/978-1-60761-682-5_6
- Vasilescu, J. and Figeys, D. 2006. Mapping protein-protein interactions by mass spectrometry. Curr. Opin. Biotechnol. 17: 394-399. https://doi.org/10.1016/j.copbio.2006.06.008
- Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N. and Miller, W. A. 2012. Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog. 8: e1002639. https://doi.org/10.1371/journal.ppat.1002639
- Wang, A. 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53: 45-66. https://doi.org/10.1146/annurev-phyto-080614-120001
- Wang, A. and Krishnaswamy, S. 2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13: 795-803. https://doi.org/10.1111/j.1364-3703.2012.00791.x
- Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32: 947-951. https://doi.org/10.1038/nbt.2969
- Whitham, S. A., Yamamoto, M. L. and Carrington, J. C. 1999. Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 96: 772-777. https://doi.org/10.1073/pnas.96.2.772
- Wittmann, S., Chatel, H., Fortin, M. G. and Laliberte, J. F. 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234: 84-92. https://doi.org/10.1006/viro.1997.8634
- Wright, A. V., Nunez, J. K. and Doudna, J. A. 2016. Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering. Cell 164: 29-44. https://doi.org/10.1016/j.cell.2015.12.035
- Yamanaka, T., Ohta, T., Takahashi, M., Meshi, T., Schmidt, R., Dean, C. et al. 2000. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. Natl. Acad. Sci. U.S.A. 97: 10107-10112. https://doi.org/10.1073/pnas.170295097
- Yamanaka, T., Imai, T., Satoh, R., Kawashima, A., Takahashi, M., Tomita, K. et al. 2002. Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J. Virol. 76: 2491-2497. https://doi.org/10.1128/jvi.76.5.2491-2497.2002
- Yang, P., Perovic, D., HabekuB, A., Zhou, R., Graner, A., Ordon, F. et al. 2013. Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV). Mol. Breed. 32: 27-37. https://doi.org/10.1007/s11032-013-9842-z
- Yang, P., Lupken, T., Habekuss, A., Hensel, G., Steuernagel, B., Kilian, B. et al. 2014. PROTEIN DISULFIDE ISOMERASE LIKE 5-1 is a susceptibility factor to plant viruses. Proc. Natl. Acad. Sci. U.S.A. 111: 2104-2109. https://doi.org/10.1073/pnas.1320362111
- Ye, C., Dickman, M. B., Whitham, S. A., Payton, M. and Verchot, J. 2011. The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol. 156: 741-755. https://doi.org/10.1104/pp.111.174110
- Yoshii, M., Yoshioka, N., Ishikawa, M. and Naito, S. 1998a. Isolation of an Arabidopsis thaliana mutant in which accumulation of cucumber mosaic virus coat protein is delayed. Plant J. 13: 211-219. https://doi.org/10.1046/j.1365-313X.1998.00024.x
- Yoshii, M., Yoshioka, N., Ishikawa, M. and Naito, S. 1998b. Isolation of an Arabidopsis thaliana mutant in which the multiplication of both cucumber mosaic virus and turnip crinkle virus is affected. J. Virol. 72: 8731-8737. https://doi.org/10.1128/JVI.72.11.8731-8737.1998
- Yoshii, M., Nishikiori, M., Tomita, K., Yoshioka, N., Kozuka, R., Naito, S. et al. 2004. The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J. Virol. 78: 6102-6111. https://doi.org/10.1128/JVI.78.12.6102-6111.2004
- Yoshii, M., Shimizu, T., Yamazaki, M., Higashi, T., Miyao, A., Hirochika, H. et al. 2009. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to rice dwarf virus. Plant J. 57: 615-625. https://doi.org/10.1111/j.1365-313X.2008.03712.x
- Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P. et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771. https://doi.org/10.1016/j.cell.2015.09.038
- Zhang, L., Chen, H., Brandizzi, F., Verchot, J. and Wang, A. 2015a. The UPR branch IRE1-bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLoS Genet. 11: e1005164. https://doi.org/10.1371/journal.pgen.1005164
- Zhang, X. C., Millet, Y. A., Cheng, Z., Bush, J. and Ausubel, F. M. 2015b. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. Nat. Plants 1: 15049. https://doi.org/10.1038/nplants.2015.49
- Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y. et al. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35: 438-440. https://doi.org/10.1038/nbt.3811
- Zou, L. J., Deng, X. G., Han, X. Y., Tan, W. R., Zhu, L. J., Xi, D. H. et al. 2016. Role of transcription factor HAT1 in modulating arabidopsis thaliana response to cucumber mosaic virus. Plant Cell Physiol. 57: 1879-1889. https://doi.org/10.1093/pcp/pcw109