Fig. 1. Geometric constraints at two corresponding points.
Fig. 2. Geometric constraints at three corresponding points.
Fig. 3. Implementation procedure of the proposed algorithm
Fig. 4. Calibration target
Fig. 5. Mean reprojection error per image
Fig. 6. Used image
Fig. 7. Layout of point pairs
Table 1. Camera calibration result
Table 2. Point ID used
Table 3. Experimental results
Table 4. Experiments using normalized coordinate
References
- Bouguet, J.Y. (2015), Camera calibration toolbox for Matlab, Caltech Vision, URL: http://www.vision.caltech.edu/bouguetj/calib_doc (last date accessed: 22 May 2019).
- Fischler, M.A. and Bolles, R.C. (1981), Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM. Vol. 24, No. 6, pp. 381-395. https://doi.org/10.1145/358669.358692
- Gao, X.S., Hou, X.R., Tang, J., and Cheng, H.F. (2003), Complete solution classification for the perspective-threepoint problem. IEEE transactions on pattern analysis and machine intelligence, Vol. 25, No. 8, pp. 930-943. https://doi.org/10.1109/TPAMI.2003.1217599
- Grafarend, E.W. and Shan, J. (1997), Closed-form solution of P4P or the three-dimensional resection problem in terms of Mobius barycentric coordinates, Journal of Geodesy, Vol. 71, No. 4, pp. 217-231. https://doi.org/10.1007/s001900050089
- Guan, Y., Cheng, X., Zhan, X., and Zhou, S. (2008), Closed-form solution of space resection using unit quaternion. In Artigo apresentado no XXI ISPRS Congress, 3-11 July 2008, Beijing, China, Vol. XXXVII, Part B3b, pp. 3-11.
- Jiang, G.W., Jiang, T., Wang, Y., and Gong, H. (2007). Space resection independent of initial value based on unit quaternions, Acta Geodaetica et Cartographica Sinica, Vol. 36, No. 2, pp. 169-175. https://doi.org/10.3321/j.issn:1001-1595.2007.02.010
- Hong, S.P. and Kim, E.M. (2019), Comparison of point-based 3d transformation methods, Proceedings of Journal of Korean Society for Geospatial Information System, Korean Society for Geospatial Information Science, 31-1 May, Busan, Korea, pp. 19-22. (in Korean)
- Kabsch, W. (1976), A solution for the best rotation to relate two sets of vectors, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, Vol. 32, No. 5, pp. 922-923. https://doi.org/10.1107/S0567739476001873
- Kim, E.M. and Choi, H.S. (2018), Analysis of the accuracy of quaternion-based spatial resection based on the layout of control points, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 4, pp. 255-262. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2018.36.4.255
- Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). EPnP: an accurate o(n) solution to the PnP problem. International Journal of Computer Vision, Vol. 81, No. 2, pp. 155-166. https://doi.org/10.1007/s11263-008-0152-6
- Lim, J.H. (2018), Optimization Theory, Jang-Hwan Publishing, Goyang.
- Luhmann, T., Robson, S., Kyle, S., and Harley, I. (2011), Close Range Photogrammetry Principles, techniques and applications, Whittles Publishing, Caithness.
- Mazaheri, M. and Habib, A. (2015), Quaternion-based solutions for the single photo resection problem, Photogrammetric Engineering & Remote Sensing, Vol. 81, No. 3, pp. 209-217. https://doi.org/10.14358/PERS.81.3.209-217
- Mikhail, E.M., Bethel, J.S., and McGlone, J.C. (2001), Introduction to Modern Photogrammetry, John Wiley & Sons Inc., New York, N.Y.
- Nielsen, A.A. (2013). Least squares adjustment: linear and nonlinear weighted regression analysis. Applied Mathematics and Computer Science/National Space Institute, Technical University of Denmark, URL: http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/2804/pdf/imm2804.pdf (last date accessed: 22 May 2019).
- Strang, G. (2016), Introduction to Linear Algebra, Wellesley-Cambridge Press, Massachusetts, M.A.
- Torr, P.H.S. and Zisserman, A. (2000), Mlesac: a new robust estimator with application to estimating image geometry, Computer Vision and Image Understanding, Vol. 78, No. 1, pp. 138-156. https://doi.org/10.1006/cviu.1999.0832