참고문헌
- Hasan F, Shah AA, Hamed A. 2006. Industrial application of microbial lipases. Enzyme. Microbiol. Technol. 39: 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
- Yang J, Guo D, Yan Y. 2007. Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. J. Mol. Catal. B. 45: 91-96. https://doi.org/10.1016/j.molcatb.2006.12.007
- Sebastian J, Muraleedharan C, Santhiagu A. 2016. A comparative study between chemical and enzymatic transesterification of high free fatty acid contained rubber seed oil for biodiesel production. Cog. Eng. 3: 1-12.
- Wang X, Yu X, Xu Y. 2009. Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzyme. Microb. Technol. 45: 94-102. https://doi.org/10.1016/j.enzmictec.2009.05.004
- Alnoch RC, Stefanello AA, Martini VP, Richter JL, Mateo C, de Souza EM, et al. 2018. Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11. Int. J. Biol. Macromol. 116: 1222-1231. https://doi.org/10.1016/j.ijbiomac.2018.05.086
- Arpigny JE, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. J. Biochem. 343(1): 177-183. https://doi.org/10.1042/bj3430177
- Quyen DT, Schmidt-Dannert C, Schmid RD. 1999. Highlevel formation of active Pseudomonas cepacia lipase atfter heterologous expression of the encoding gene and its modified foldase in Escherichia coli and rapid in vitro refolding. Appl. Environ. Microbiol. 65: 787-794. https://doi.org/10.1128/AEM.65.2.787-794.1999
- Martini VP, Glogauer A, Muller-Santos M, Iulek J, de Souza EM, Mitchell DA, et al. 2014. First co-expression of a lipase and its specific foldase obtained by metagenomics. Microb. Cell Fact. 13: 171 https://doi.org/10.1186/s12934-014-0171-7
- Marchesi JR, et al. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799. https://doi.org/10.1128/AEM.64.2.795-799.1998
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
- Humphrey W, Dalke A, Schulten K. 1996. VMD: Visual Molecular Dynamics. J. Mol. Graph. 14: 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
- Sambrook J, Green RM. 2012. Molecular cloning: A Laboratory Manual 4th Edition. New York(US): Cold Spring Harbor.
- Ceroni A, Passerini A, Vullo A, and Frasconi P. 2006. DISULFIND: a Disulfide Bonding State and Cysteine Connectivity Prediction Server. Nucleic Acids Res. 34: 177-181. https://doi.org/10.1093/nar/gkl266
- Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: 296-303.
- Uziela K, Hurtado DM, Shu N, Wallner B, Elofsson A. 2017. ProQ3D: Improved model quality assessments using Deep Learning. Bioinformatics 33: 1578-1580.
- Kim YO, Khosasih V, Nam BH, Lee SJ, Suwanto A, Kim HK. 2012, Gene cloning and catalytic characterization of cold adapted lipase of Photobacterium sp. MA1-3 isolated from blood clam. J. Biosci. Bioeng. 114: 589-595. https://doi.org/10.1016/j.jbiosc.2012.06.013
- Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, et al. 2005. Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J. Biosci. Bioeng. 99: 485-492. https://doi.org/10.1263/jbb.99.485
- Basu S, Bose C, Ojha N, Das N, Das J, Pal M, Khurana S. 2015. Evolution of bacterial and fungal growth media. Bioinformation 11: 182-184. https://doi.org/10.6026/97320630011182
- De Smet B, Mayo M, Peeters C, Zlosnik JE, Spilker T, Hird TJ, et al. 2015. Burkholderia stagnalis sp. nov. And Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int. J. Syst. Evol. Microbiol. 65: 2265-71. https://doi.org/10.1099/ijs.0.000251
- Bane SE, Velasquez JE, Robinson AS. 2006. Expression and purification of milligram levels of inactive G-protein coupled receptors in E. coli. Protein Expr. Purif. 52: 348-355. https://doi.org/10.1016/j.pep.2006.10.017
- Arifin, Ranlym A, Kim SJ, Yim JH, Suwanto A, Kim HK. 2013. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antartic. J. Microbiol. Biotechnol. 23: 661-667. https://doi.org/10.4014/jmb.1212.12040
- Takeda Y, Aono R, Doukyu N. 2006. Purification, characterization, and molecular cloning of organic-solventtolerant cholesterol esterase from cyclohexanetolerant Burkholderia cepacia strain ST-200. Extremophiles 10: 269-277. https://doi.org/10.1007/s00792-005-0494-8
- Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification, and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781. https://doi.org/10.1007/s00253-004-1568-8
- Liu T, Wang Y, Luo X, Li J, Reed SA, Xiao H, et al. 2016. Enhancing protein stability with extended disulfide bonds. Proc. Natl. Acad. Sci. USA 113: 5910-5915. https://doi.org/10.1073/pnas.1605363113
- Svendsen A, Borch K , Barfoed M, Nielsen TB, Gormsen E, Patkar SA. 1995. Biochemical properties of cloned lipases fromthe Pseudomonas family. Biochim. Biophys. Acta 1259: 9-17. https://doi.org/10.1016/0005-2760(95)00117-U
- Seitz EW. 1974. Industrial applications of microbial lipases-a review. J. Am. Oil. Chem. Soc. 51: 12-16. https://doi.org/10.1007/BF02545206
- Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases and Phospholipases: Methods and Protocols, pp. 4-11. Springer Science Business Media, New York.
- Hertadi R, Widhyastuti H. 2015. Effect of Ca2+ to the activity and stability of lipase isolated from Chromohalobacter japonicas BK-AB18. Procedia Chem. 16: 306-313. https://doi.org/10.1016/j.proche.2015.12.057
- Liebeton K, Zacharias A, Jaeger KE. 2001. Disulfide bound in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for inetraction with its foldase. J. Bacteriol. 183: 597-603. https://doi.org/10.1128/JB.183.2.597-603.2001
- Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S. 2011. A new highly alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis. 10: 221. https://doi.org/10.1186/1476-511X-10-221
피인용 문헌
- Emerging priorities for microbial metagenome research vol.11, 2019, https://doi.org/10.1016/j.biteb.2020.100485
- Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry vol.10, pp.9, 2019, https://doi.org/10.3390/catal10091032
- Co-Expression of a Thermally Stable and Methanol-Resistant Lipase and Its Chaperone from Burkholderia cepacia G63 in Escherichia coli vol.193, pp.3, 2019, https://doi.org/10.1007/s12010-020-03453-0