• Title/Summary/Keyword: foldase

Search Result 9, Processing Time 0.025 seconds

Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Burkholderia territorii GP3 from Mount Papandayan Soil

  • Putra, Ludwinardo;Natadiputri, Griselda Herman;Meryandini, Anja;Suwanto, Antonius
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.944-951
    • /
    • 2019
  • Lipases are industrial enzymes that catalyze both triglyceride hydrolysis and ester synthesis. The overexpression of lipase genes is considered one of the best approaches to increase the enzymatic production for industrial applications. Subfamily I.2. lipases require a chaperone or foldase in order to become a fully-activated enzyme. The goal of this research was to isolate, clone, and co-express genes that encode lipase and foldase from Burkholderia territorii GP3, a lipolytic bacterial isolate obtained from Mount Papandayan soil via growth on Soil Extract Rhodamine Agar. Genes that encode for lipase (lipBT) and foldase (lifBT) were successfully cloned from this isolate and co-expressed in the E. coli BL21 background. The highest expression was shown in E. coli BL21 (DE3) pLysS, using pET15b expression vector. LipBT was particulary unique as it showed highest activity with optimum temperature of $80^{\circ}C$ at pH 11.0. The optimum substrate for enzyme activity was $C_{10}$, which is highly stable in methanol solvent. The enzyme was strongly activated by $Ca^{2+}$, $Mg^{2+}$, and strongly inhibited by $Fe^{2+}$ and $Zn^{2+}$. In addition, the enzyme was stable and compatible in non-ionic surfactant, and was strongly incompatible in ionic surfactant.

Improved Technologies to Produce Heterologous Proteins in Recombinant Escherichia coli. (재조합 대장균에서 외래단백질 발현을 위한 기술개발)

  • 박용철;권대혁;이대희;서진호
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Escherichia coli has been used as an expression work horse for foreign genes. This article summarized recent development in genetic engineering techniques for overproduction of medical proteins and industrial enzymes. Special emphasis was placed upon research activities concerning folding and refolding of inclusion bodies at genetic and fermentation levels. Plasmid and mRNA stabilization, development of strong inducible promoters, modification of translational elements and reduction of rpoteolytic degradation were carried out to elevate an expression level of a target protein. Optimization of culture conditions, improvement of denaturation and renaturation steps and coexpression of molecular chaperones or foldase were accomplished to produce active proteins in soluble form. Fusion protein systems with selective separation and surface display technology were also performed in an effort to make the E. coli expression system more effective and versatile.

  • PDF

Structure Analysis of the Full Length PDI Genomic DNA Isolated from Bombyx mori

  • Kim, Sung-Wan;Goo, Tae-Won;Yun, Eun-Young;Park, Kwang-Ho;Hwang, Jae-Sam;Kang, Seok-Woo;Kwon, O-Yu
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.44-44
    • /
    • 2003
  • Protein disulfide isomerase (PDI) is not only an isomerase catalyzing the formation of native disulfide bond(s) of nascent peptide, but also a molecular chaperone assisting chain folding. We have already reported the structure of a cDNA (bPDl) encoding PDI from Bombyx mori and the function of PDI as foldase in assisting protein folding. (omitted)

  • PDF

Overexpression, Purification, and Characterization of $\beta$-Subunit of Group II Chaperonin from Hyperthermophilic Aeropyrum pernix K1

  • Shin, Eun-Jung;Lee, Jin-Woo;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.542-549
    • /
    • 2010
  • In the present study, overexpression, purification, and characterization of Aeropyrum pernix K1 chaperonin B in E. coli were investigated. The chaperonin $\beta$-subunit gene (ApCpnB, 1,665 bp ORF) from the hyperthermophilic archaeon A. pernix K1 was amplified by PCR and subcloned into vector pET21a. The constructed pET21a-ApCpnB (6.9 kb) was transformed into E. coli BL21 Codonplus (DE3). The transformant cell successfully expressed ApCpnB, and the expression of ApCpnB (61.2 kDa) was identified through analysis of the fractions by SDS-PAGE (14% gel). The recombinant ApCpnB was purified to higher than 94% by using heat-shock treatment at $90^{\circ}C$ for 20 min and fast protein liquid chromatography on a HiTrap Q column step. The purified ApCpnB showed ATPase activity and its activity was dependent on temperature. In the presence of ATP, ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}$ and $50^{\circ}$, respectively. Specifically, the activity of malate dehydrogenase (MDH) at $85^{\circ}$ was greatly stabilized by the addition of ApCpnB and ATP. Coexpression of pro-carboxypeptidase B (pro-CPB) and ApCpnB in E. coli BL21 Codonplus (DE3) had a marked effect on the yield of pro-CPB as a soluble and active form, speculating that ApCpnB facilitates the correct folding of pro-CPB. These results suggest that ApCpnB has both foldase and holdase activities and can be used as a powerful molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.

Characterization of an Extracellular Lipase in Burkholderia sp. HY-10 Isolated from a Longicorn Beetle

  • Park, Doo-Sang;Oh, Hyun-Woo;Heo, Sun-Yeon;Jeong, Won-Jin;Shin, Dong-Ha;Bae, Kyung-Sook;Park, Ho-Yong
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.409-417
    • /
    • 2007
  • Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and $60^{\circ}C$. A broad range of lipase substrates, from $C_4\;to\;C_{18}$ p-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was p-nitrophenyl caproate ($C_6$). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family 1.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, $Ser^{131},\;His^{330},\;and\;Asp^{308}$, which composed the catalytic triad of the enzyme.

Expression of Antibacterial Protein, Nuecin, Using Baculorivus Expression Vector System in Bm5 Insect Cell and Bombyx mori (누에 배양세포(Bm5) 및 생체에서 베큘로바이러스 발현계를 이용한 누에신 단백질 발현 특성)

  • 윤은영;구태원;황재삼;김상현;강석우;김근영;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.44 no.2
    • /
    • pp.69-73
    • /
    • 2002
  • For the practical use of nuecin protein, we tried to overexpress nuecin using Bm5 insect cell and Bombyx mori. We inserted nuecin cDNA into pBm10po1-Xa vector derived from B. mori nuclear polyhedrosis virus (BmNPV), and expressed in Bm5 cells and B. mori respectively. SDS-PAGE and Northern blot analysis showed an expressed of the protein when baculovirus expression vector system (BEVS) was used. The amount of intracellular protein is abundant, but the amount of extracellular protein is poor. The results suggest that the biologically active nuecin protein produced by using BEVS is poor because incresed level of misfolded nuecin by the strong promoter, polyhedrin and p 10 of BEVS, decrease the level of free chaperons and foldases by binding with them.

Study on the soluble exoression of recombinant human eoidermal growth factor using various fusion oartners in Escherichia coli (재조합 대장균에서 다양한 융합 파트너를 이용한 인간 상피세포성장인자의 발현 연구)

  • Kim, Byung-Lip;Baek, Jung-Eun;Kim, Chun-Sug;Lee, Hyeok-Weon;Ahn, Jung-Oh;Lee, Hong-Weon;Jung, Joon-Ki;Lee, Eun-Gyo;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.205-212
    • /
    • 2008
  • The efficient soluble expression of human epidermal growth factor (hEGF) was achieved by using functional fusion partners in cytoplasm and periplasm of Escherichia coli (E. coli). hEGF was over-expressed in inactive inclusion body form in cytoplasm of E. coli due to improper disulfide bond formation and hydrophobic interaction, yielding about 5.9 mg/L in flask culture. Six functional fusion partners were introduced by linking to N-terminal part of hEGF gene for the high-level expression of soluble and active hEGF in cytoplasm and peri plasm region. Three fusion partners for cytoplasmic expression such as acidic tail of synuclein (ATS), thioredoxin (Trx) and lipase, and three fusion partners for periplasmic expression such as periplasmic cystein oxidoreductases (DsbA and DsbC) and maltose binding protein (MBP) were investigated. hEGF fused with ATS and DsbA showed over 90% of solubility in cytoplasm and periplasm, respectively. Especially DsbA was found to be an efficient fusion partner for soluble and high-level expression of hEGF, yielding about 18.1 mg/L and three-fold higher level compared to that of insoluble non-fusion hEGF in cytoplasm. Thus, heterologous proteins containing complex disulfide bond and many hydrophobic amino acids can effectively be produced as an active form in E. coli by introducing a suitable peptide or protein.