Figure 1. UV-vis spectrum of synthesized gold nanoparticles using fullerene oxide [C60 (O)n, n ≥ 1].
Figure 2. XRD patterns of synthesized gold nanoparticles using fullerene oxide [C60 (O)n, n ≥ 1].
Figure 3. SEM image of synthesized gold nanoparticles using fullerene oxide [C60 (O)n, n ≥ 1].
Figure 4. UV-vis spectra of 4-nitroaniline reduction with gold nanoparticles as catalyst in the presence of NaBH4.
Figure 5. Kinetics of 4-nitroaniline reduction using synthesized gold nanoparticles as catalyst.
References
- X. Zhang, J. Zhang, W., P. H. Xiang, and J. Qiao, "Fabrication of graphene-fullerene hybrid by self-assembly and its application as support material for methanol electrocatalytic oxidation reaction", Appl. Surf. Sci., 440, 477 (2018). https://doi.org/10.1016/j.apsusc.2018.01.150
- H. Imahori and Y. Sakata, "Fullerenes as novel acceptors in photosynthetic electron transfer", Eur. J. Org. Chem., 1999, 2445 (1999). https://doi.org/10.1002/(SICI)1099-0690(199910)1999:10<2445::AID-EJOC2445>3.0.CO;2-G
- H. J. Hwang, K. R. Byun, J. Y. Lee, and J. W. Kang, "A nanoscale field effect data storage of bipolar endo-fullerenes shuttle device", Curr. Appl. Phys., 5, 609 (2005).
-
F. Cataldo, "Synthesis of silver nanoparticles by the action of heavy ozonized
$C_{60}$ fullerene on silver nitrate solutions", Fuller. Nanotub. Car. N., 23, 523 (2015). https://doi.org/10.1080/1536383X.2014.908852 - Y. Zhou, C. Y. Wang, Y. R. Zhu, and Z. Y. Chen, "A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature" Chem. Mater., 11, 2310 (1999). https://doi.org/10.1021/cm990315h
- T. K. Sau, A. Pal, N. R. Jana, Z. L. Wang, and T. Pal, "Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles", J. Nanopart. Res., 3, 257 (2001). https://doi.org/10.1023/A:1017567225071
- C. L. Nehl and J. H. Hafner, "Shape-dependent plasmon resonances of gold nanoparticles", J. Mater. Chem., 18, 2415 (2008). https://doi.org/10.1039/b714950f
- M. A. Wall, S. Harmsen, S. Pal, L. Zhang, G. Arianna, J. R. Lombardi, and M. F. Kircher, "Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis", Adv. Mater., 29, 1605622 (2017). https://doi.org/10.1002/adma.201605622
- C. J. Orendorff, T. K. Sau, and C. J. Murphy, "Shape-dependent plasmon-resonant gold nanoparticles", Small, 2, 636 (2006). https://doi.org/10.1002/smll.200500299
- B. Yang, J. Chou, X. Dong, C. Qu, Q. Yu, K. J. Lee, and N. Harvey, "Size-Controlled Green Synthesis of Highly Stable and Uniform Small to Ultrasmall Gold Nanoparticles by Controlling Reaction Steps and pH", J. Phys. Chem. C, 121, 8961 (2017). https://doi.org/10.1021/acs.jpcc.7b00434
- J. Zhang, H. Liu, Z. Wang, and N. Ming, "Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances" Adv. Funct. Mater., 17, 3295 (2007). https://doi.org/10.1002/adfm.200700497
- E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, "Synthesis and optical properties of "branched" gold nanocrystals", Nano Lett., 4, 327 (2004). https://doi.org/10.1021/nl0351542
- C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles", Nano Lett., 6, 683 (2006). https://doi.org/10.1021/nl052409y
- M. Shen, W. F. Chen, Y. Sun, and C. G. Yan, "Synthesis and characterization of water-soluble gold colloids stabilized with aminoresorcinarene", J. Phys. Chem. Solids, 68, 2252 (2007). https://doi.org/10.1016/j.jpcs.2007.06.007
- T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, "Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique", Eur. Phys. J. Spec. Top., 153, 361 (2008). https://doi.org/10.1140/epjst/e2008-00462-0
- M. J. Ashley, M. R. Bourgeois, R. R. Murthy, C. R. Laramy, M. B. Ross, R. R. Naik, and C. A. Mirkin, "Shape and size control of substrate-grown gold nanoparticles for surface-enhanced raman spectroscopy detection of chemical analytes", J. Phys. Chem. C, 122, 2307 (2018). https://doi.org/10.1021/acs.jpcc.7b11440
- C. Morasso, D. Mehn, R. Vanna, M. Bedoni, E. Forvi, M. Colombo, and F Gramatica, "One-step synthesis of star-like gold nanoparticles for surface enhanced Raman spectroscopy", Mater. Chem. Phys., 143, 1215 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.024
- H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, "Shape-and size-dependent refractive index sensitivity of gold nanoparticles", Langmuir, 24, 5233 (2008). https://doi.org/10.1021/la800305j
- C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, "A critical review on textile wastewater treatments: possible approaches", J. Environ. Econ. Manag., 182, 351 (2016).
- M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, "Defining rules for the shape evolution of gold nanoparticles", J. Am. Chem. Soc., 134, 14542 (2012). https://doi.org/10.1021/ja305245g
- M. L. Personick, M. R. Langille, J. Zhang, and C. A. Mirkin, "Shape control of gold nanoparticles by silver underpotential deposition", Nano Lett., 11, 3394 (2011). https://doi.org/10.1021/nl201796s
- L. Minati, F. Benetti, A. Chiappini, and G. Speranza, "Onestep synthesis of star-shaped gold nanoparticles", Colloids Surf. A Physicochem. Eng. Asp., 441, 623 (2014). https://doi.org/10.1016/j.colsurfa.2013.10.025
- M. Wang, B. De Vivo, W. Lu, and M. Muniz-Miranda, "Sensitive Surface-Enhanced Raman Scattering (SERS) Detection of Nitroaromatic Pollutants in Water", Appl. Spectrosc., 68, 784 (2014). https://doi.org/10.1366/13-07428
- A. A. Al-Kahtani, T. Almuqati, N. Alhokbany, T. Ahamad, M. Naushad, and S. M. Alshehri, "A clean approach for the reduction of hazardous 4-nitrophenol using gold nanoparticles decorated multiwalled carbon nanotubes", J. Clean. Prod., 191, 429 (2018). https://doi.org/10.1016/j.jclepro.2018.04.197
- C. Umamaheswari, A. Lakshmanan, and N. S. Nagarajan, "Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange", J. Photochem. Photobiol. B, 178, 33 (2018). https://doi.org/10.1016/j.jphotobiol.2017.10.017
- J. W. Lee, Y. M. Lee, B. E. Park, and W. B. Ko, "Efficient Method for the Cleavage of Fullerene Oxides with Several Aromatic Amines under Ultrasonic Irradiation", Elast. Compos., 42, 1 (2007).
- W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, "Determination of size and concentration of gold nanoparticles from UV-Vis spectra", Anal. Chem., 79, 4215 (2007). https://doi.org/10.1021/ac0702084
- N. R. Jana, L. Gearheart, and C. J. Murphy, "Seeding growth for size control of 5-40 nm diameter gold nanoparticles", Langmuir, 17, 6782 (2001). https://doi.org/10.1021/la0104323
- Y. Chen, X. Gu, C. G. Nie, Z. Y. Jiang, Z. X. Xie, and C. J. Lin, "Shape controlled growth of gold nanoparticles by a solution synthesis", Chem. Commun., 33, 4181 (2005).
- Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles", Science, 298, 2176 (2002). https://doi.org/10.1126/science.1077229
- Y. Shao, Y. Jin, and S. Dong, "Synthesis of gold nanoplates by aspartate reduction of gold chloride", Chem. Commun., 9, 1104 (2004).
- C. Deraedt, L. Salmon, S. Gatard, R. Ciganda, R. Hernandez, J. Ruiz, and D. Astruc, "Sodium borohydride stabilizes very active gold nanoparticle catalysts", Chem. Commun., 50, 14194 (2014). https://doi.org/10.1039/C4CC05946H
- S. S. R. Gupta, M. L. Kantam, and B. M. Bhanage, "Shape-selective synthesis of gold nanoparticles and their catalytic activity towards reduction of p-nitroaniline", Nano-Struct. Nano-Objects, 14, 125 (2018). https://doi.org/10.1016/j.nanoso.2018.01.017