DOI QR코드

DOI QR Code

Synthesis of Gold Nanoparticles Using Fullerene Oxide and Their Catalytic Activity for Reduction of 4-Nitroaniline

  • Park, Geun Wook (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Jeong Won (Nanomaterials Research Institute, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2019.04.04
  • Accepted : 2019.05.02
  • Published : 2019.06.30

Abstract

Gold nanoparticles were synthesized by reacting potassium tetrachloroaurate ($KAuCl_4$), potassium carbonate ($K_2CO_3$), and isopropyl alcohol in the presence of fullerene oxide [$C_{60}(O)_n$, $n{\geq}1$], which was, in turn, prepared from [$C_{60}$] fullerene and m-chloroperoxybenzoic acid under refluxing conditions. The crystallinity and morphology of the prepared gold nanoparticles were confirmed by UV-vis spectroscopy, X-ray diffraction, and scanning electron microscopy. The activity of the gold nanoparticles in the reduction of 4-nitroaniline was measured in order to determine its capability as a catalyst.

Keywords

HKGMCJ_2019_v54n2_105_f0001.png 이미지

Figure 1. UV-vis spectrum of synthesized gold nanoparticles using fullerene oxide [C60 (O)n, n ≥ 1].

HKGMCJ_2019_v54n2_105_f0002.png 이미지

Figure 2. XRD patterns of synthesized gold nanoparticles using fullerene oxide [C60 (O)n, n ≥ 1].

HKGMCJ_2019_v54n2_105_f0003.png 이미지

Figure 3. SEM image of synthesized gold nanoparticles using fullerene oxide [C60 (O)n, n ≥ 1].

HKGMCJ_2019_v54n2_105_f0004.png 이미지

Figure 4. UV-vis spectra of 4-nitroaniline reduction with gold nanoparticles as catalyst in the presence of NaBH4.

HKGMCJ_2019_v54n2_105_f0005.png 이미지

Figure 5. Kinetics of 4-nitroaniline reduction using synthesized gold nanoparticles as catalyst.

References

  1. X. Zhang, J. Zhang, W., P. H. Xiang, and J. Qiao, "Fabrication of graphene-fullerene hybrid by self-assembly and its application as support material for methanol electrocatalytic oxidation reaction", Appl. Surf. Sci., 440, 477 (2018). https://doi.org/10.1016/j.apsusc.2018.01.150
  2. H. Imahori and Y. Sakata, "Fullerenes as novel acceptors in photosynthetic electron transfer", Eur. J. Org. Chem., 1999, 2445 (1999). https://doi.org/10.1002/(SICI)1099-0690(199910)1999:10<2445::AID-EJOC2445>3.0.CO;2-G
  3. H. J. Hwang, K. R. Byun, J. Y. Lee, and J. W. Kang, "A nanoscale field effect data storage of bipolar endo-fullerenes shuttle device", Curr. Appl. Phys., 5, 609 (2005).
  4. F. Cataldo, "Synthesis of silver nanoparticles by the action of heavy ozonized $C_{60}$ fullerene on silver nitrate solutions", Fuller. Nanotub. Car. N., 23, 523 (2015). https://doi.org/10.1080/1536383X.2014.908852
  5. Y. Zhou, C. Y. Wang, Y. R. Zhu, and Z. Y. Chen, "A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature" Chem. Mater., 11, 2310 (1999). https://doi.org/10.1021/cm990315h
  6. T. K. Sau, A. Pal, N. R. Jana, Z. L. Wang, and T. Pal, "Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles", J. Nanopart. Res., 3, 257 (2001). https://doi.org/10.1023/A:1017567225071
  7. C. L. Nehl and J. H. Hafner, "Shape-dependent plasmon resonances of gold nanoparticles", J. Mater. Chem., 18, 2415 (2008). https://doi.org/10.1039/b714950f
  8. M. A. Wall, S. Harmsen, S. Pal, L. Zhang, G. Arianna, J. R. Lombardi, and M. F. Kircher, "Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis", Adv. Mater., 29, 1605622 (2017). https://doi.org/10.1002/adma.201605622
  9. C. J. Orendorff, T. K. Sau, and C. J. Murphy, "Shape-dependent plasmon-resonant gold nanoparticles", Small, 2, 636 (2006). https://doi.org/10.1002/smll.200500299
  10. B. Yang, J. Chou, X. Dong, C. Qu, Q. Yu, K. J. Lee, and N. Harvey, "Size-Controlled Green Synthesis of Highly Stable and Uniform Small to Ultrasmall Gold Nanoparticles by Controlling Reaction Steps and pH", J. Phys. Chem. C, 121, 8961 (2017). https://doi.org/10.1021/acs.jpcc.7b00434
  11. J. Zhang, H. Liu, Z. Wang, and N. Ming, "Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances" Adv. Funct. Mater., 17, 3295 (2007). https://doi.org/10.1002/adfm.200700497
  12. E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, "Synthesis and optical properties of "branched" gold nanocrystals", Nano Lett., 4, 327 (2004). https://doi.org/10.1021/nl0351542
  13. C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles", Nano Lett., 6, 683 (2006). https://doi.org/10.1021/nl052409y
  14. M. Shen, W. F. Chen, Y. Sun, and C. G. Yan, "Synthesis and characterization of water-soluble gold colloids stabilized with aminoresorcinarene", J. Phys. Chem. Solids, 68, 2252 (2007). https://doi.org/10.1016/j.jpcs.2007.06.007
  15. T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, "Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique", Eur. Phys. J. Spec. Top., 153, 361 (2008). https://doi.org/10.1140/epjst/e2008-00462-0
  16. M. J. Ashley, M. R. Bourgeois, R. R. Murthy, C. R. Laramy, M. B. Ross, R. R. Naik, and C. A. Mirkin, "Shape and size control of substrate-grown gold nanoparticles for surface-enhanced raman spectroscopy detection of chemical analytes", J. Phys. Chem. C, 122, 2307 (2018). https://doi.org/10.1021/acs.jpcc.7b11440
  17. C. Morasso, D. Mehn, R. Vanna, M. Bedoni, E. Forvi, M. Colombo, and F Gramatica, "One-step synthesis of star-like gold nanoparticles for surface enhanced Raman spectroscopy", Mater. Chem. Phys., 143, 1215 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.024
  18. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, "Shape-and size-dependent refractive index sensitivity of gold nanoparticles", Langmuir, 24, 5233 (2008). https://doi.org/10.1021/la800305j
  19. C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, "A critical review on textile wastewater treatments: possible approaches", J. Environ. Econ. Manag., 182, 351 (2016).
  20. M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, "Defining rules for the shape evolution of gold nanoparticles", J. Am. Chem. Soc., 134, 14542 (2012). https://doi.org/10.1021/ja305245g
  21. M. L. Personick, M. R. Langille, J. Zhang, and C. A. Mirkin, "Shape control of gold nanoparticles by silver underpotential deposition", Nano Lett., 11, 3394 (2011). https://doi.org/10.1021/nl201796s
  22. L. Minati, F. Benetti, A. Chiappini, and G. Speranza, "Onestep synthesis of star-shaped gold nanoparticles", Colloids Surf. A Physicochem. Eng. Asp., 441, 623 (2014). https://doi.org/10.1016/j.colsurfa.2013.10.025
  23. M. Wang, B. De Vivo, W. Lu, and M. Muniz-Miranda, "Sensitive Surface-Enhanced Raman Scattering (SERS) Detection of Nitroaromatic Pollutants in Water", Appl. Spectrosc., 68, 784 (2014). https://doi.org/10.1366/13-07428
  24. A. A. Al-Kahtani, T. Almuqati, N. Alhokbany, T. Ahamad, M. Naushad, and S. M. Alshehri, "A clean approach for the reduction of hazardous 4-nitrophenol using gold nanoparticles decorated multiwalled carbon nanotubes", J. Clean. Prod., 191, 429 (2018). https://doi.org/10.1016/j.jclepro.2018.04.197
  25. C. Umamaheswari, A. Lakshmanan, and N. S. Nagarajan, "Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange", J. Photochem. Photobiol. B, 178, 33 (2018). https://doi.org/10.1016/j.jphotobiol.2017.10.017
  26. J. W. Lee, Y. M. Lee, B. E. Park, and W. B. Ko, "Efficient Method for the Cleavage of Fullerene Oxides with Several Aromatic Amines under Ultrasonic Irradiation", Elast. Compos., 42, 1 (2007).
  27. W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, "Determination of size and concentration of gold nanoparticles from UV-Vis spectra", Anal. Chem., 79, 4215 (2007). https://doi.org/10.1021/ac0702084
  28. N. R. Jana, L. Gearheart, and C. J. Murphy, "Seeding growth for size control of 5-40 nm diameter gold nanoparticles", Langmuir, 17, 6782 (2001). https://doi.org/10.1021/la0104323
  29. Y. Chen, X. Gu, C. G. Nie, Z. Y. Jiang, Z. X. Xie, and C. J. Lin, "Shape controlled growth of gold nanoparticles by a solution synthesis", Chem. Commun., 33, 4181 (2005).
  30. Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles", Science, 298, 2176 (2002). https://doi.org/10.1126/science.1077229
  31. Y. Shao, Y. Jin, and S. Dong, "Synthesis of gold nanoplates by aspartate reduction of gold chloride", Chem. Commun., 9, 1104 (2004).
  32. C. Deraedt, L. Salmon, S. Gatard, R. Ciganda, R. Hernandez, J. Ruiz, and D. Astruc, "Sodium borohydride stabilizes very active gold nanoparticle catalysts", Chem. Commun., 50, 14194 (2014). https://doi.org/10.1039/C4CC05946H
  33. S. S. R. Gupta, M. L. Kantam, and B. M. Bhanage, "Shape-selective synthesis of gold nanoparticles and their catalytic activity towards reduction of p-nitroaniline", Nano-Struct. Nano-Objects, 14, 125 (2018). https://doi.org/10.1016/j.nanoso.2018.01.017