Browse > Article
http://dx.doi.org/10.7473/EC.2019.54.2.105

Synthesis of Gold Nanoparticles Using Fullerene Oxide and Their Catalytic Activity for Reduction of 4-Nitroaniline  

Park, Geun Wook (Department of Convergence Science, Graduate School, Sahmyook University)
Ko, Jeong Won (Nanomaterials Research Institute, Sahmyook University)
Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
Publication Information
Elastomers and Composites / v.54, no.2, 2019 , pp. 105-109 More about this Journal
Abstract
Gold nanoparticles were synthesized by reacting potassium tetrachloroaurate ($KAuCl_4$), potassium carbonate ($K_2CO_3$), and isopropyl alcohol in the presence of fullerene oxide [$C_{60}(O)_n$, $n{\geq}1$], which was, in turn, prepared from [$C_{60}$] fullerene and m-chloroperoxybenzoic acid under refluxing conditions. The crystallinity and morphology of the prepared gold nanoparticles were confirmed by UV-vis spectroscopy, X-ray diffraction, and scanning electron microscopy. The activity of the gold nanoparticles in the reduction of 4-nitroaniline was measured in order to determine its capability as a catalyst.
Keywords
fullerene oxide; gold nanoparticles; UV-vis spectroscopy; catalyst; reduction of 4-nitroaniline;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Chen, X. Gu, C. G. Nie, Z. Y. Jiang, Z. X. Xie, and C. J. Lin, "Shape controlled growth of gold nanoparticles by a solution synthesis", Chem. Commun., 33, 4181 (2005).
2 Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles", Science, 298, 2176 (2002).   DOI
3 Y. Shao, Y. Jin, and S. Dong, "Synthesis of gold nanoplates by aspartate reduction of gold chloride", Chem. Commun., 9, 1104 (2004).
4 C. Deraedt, L. Salmon, S. Gatard, R. Ciganda, R. Hernandez, J. Ruiz, and D. Astruc, "Sodium borohydride stabilizes very active gold nanoparticle catalysts", Chem. Commun., 50, 14194 (2014).   DOI
5 S. S. R. Gupta, M. L. Kantam, and B. M. Bhanage, "Shape-selective synthesis of gold nanoparticles and their catalytic activity towards reduction of p-nitroaniline", Nano-Struct. Nano-Objects, 14, 125 (2018).   DOI
6 X. Zhang, J. Zhang, W., P. H. Xiang, and J. Qiao, "Fabrication of graphene-fullerene hybrid by self-assembly and its application as support material for methanol electrocatalytic oxidation reaction", Appl. Surf. Sci., 440, 477 (2018).   DOI
7 H. Imahori and Y. Sakata, "Fullerenes as novel acceptors in photosynthetic electron transfer", Eur. J. Org. Chem., 1999, 2445 (1999).   DOI
8 H. J. Hwang, K. R. Byun, J. Y. Lee, and J. W. Kang, "A nanoscale field effect data storage of bipolar endo-fullerenes shuttle device", Curr. Appl. Phys., 5, 609 (2005).
9 F. Cataldo, "Synthesis of silver nanoparticles by the action of heavy ozonized $C_{60}$ fullerene on silver nitrate solutions", Fuller. Nanotub. Car. N., 23, 523 (2015).   DOI
10 Y. Zhou, C. Y. Wang, Y. R. Zhu, and Z. Y. Chen, "A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature" Chem. Mater., 11, 2310 (1999).   DOI
11 T. K. Sau, A. Pal, N. R. Jana, Z. L. Wang, and T. Pal, "Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles", J. Nanopart. Res., 3, 257 (2001).   DOI
12 C. L. Nehl and J. H. Hafner, "Shape-dependent plasmon resonances of gold nanoparticles", J. Mater. Chem., 18, 2415 (2008).   DOI
13 M. A. Wall, S. Harmsen, S. Pal, L. Zhang, G. Arianna, J. R. Lombardi, and M. F. Kircher, "Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis", Adv. Mater., 29, 1605622 (2017).   DOI
14 C. J. Orendorff, T. K. Sau, and C. J. Murphy, "Shape-dependent plasmon-resonant gold nanoparticles", Small, 2, 636 (2006).   DOI
15 B. Yang, J. Chou, X. Dong, C. Qu, Q. Yu, K. J. Lee, and N. Harvey, "Size-Controlled Green Synthesis of Highly Stable and Uniform Small to Ultrasmall Gold Nanoparticles by Controlling Reaction Steps and pH", J. Phys. Chem. C, 121, 8961 (2017).   DOI
16 M. Shen, W. F. Chen, Y. Sun, and C. G. Yan, "Synthesis and characterization of water-soluble gold colloids stabilized with aminoresorcinarene", J. Phys. Chem. Solids, 68, 2252 (2007).   DOI
17 J. Zhang, H. Liu, Z. Wang, and N. Ming, "Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances" Adv. Funct. Mater., 17, 3295 (2007).   DOI
18 E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, "Synthesis and optical properties of "branched" gold nanocrystals", Nano Lett., 4, 327 (2004).   DOI
19 C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles", Nano Lett., 6, 683 (2006).   DOI
20 T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, "Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique", Eur. Phys. J. Spec. Top., 153, 361 (2008).   DOI
21 M. J. Ashley, M. R. Bourgeois, R. R. Murthy, C. R. Laramy, M. B. Ross, R. R. Naik, and C. A. Mirkin, "Shape and size control of substrate-grown gold nanoparticles for surface-enhanced raman spectroscopy detection of chemical analytes", J. Phys. Chem. C, 122, 2307 (2018).   DOI
22 C. Morasso, D. Mehn, R. Vanna, M. Bedoni, E. Forvi, M. Colombo, and F Gramatica, "One-step synthesis of star-like gold nanoparticles for surface enhanced Raman spectroscopy", Mater. Chem. Phys., 143, 1215 (2014).   DOI
23 H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, "Shape-and size-dependent refractive index sensitivity of gold nanoparticles", Langmuir, 24, 5233 (2008).   DOI
24 C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, "A critical review on textile wastewater treatments: possible approaches", J. Environ. Econ. Manag., 182, 351 (2016).
25 M. Wang, B. De Vivo, W. Lu, and M. Muniz-Miranda, "Sensitive Surface-Enhanced Raman Scattering (SERS) Detection of Nitroaromatic Pollutants in Water", Appl. Spectrosc., 68, 784 (2014).   DOI
26 M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, "Defining rules for the shape evolution of gold nanoparticles", J. Am. Chem. Soc., 134, 14542 (2012).   DOI
27 M. L. Personick, M. R. Langille, J. Zhang, and C. A. Mirkin, "Shape control of gold nanoparticles by silver underpotential deposition", Nano Lett., 11, 3394 (2011).   DOI
28 L. Minati, F. Benetti, A. Chiappini, and G. Speranza, "Onestep synthesis of star-shaped gold nanoparticles", Colloids Surf. A Physicochem. Eng. Asp., 441, 623 (2014).   DOI
29 A. A. Al-Kahtani, T. Almuqati, N. Alhokbany, T. Ahamad, M. Naushad, and S. M. Alshehri, "A clean approach for the reduction of hazardous 4-nitrophenol using gold nanoparticles decorated multiwalled carbon nanotubes", J. Clean. Prod., 191, 429 (2018).   DOI
30 C. Umamaheswari, A. Lakshmanan, and N. S. Nagarajan, "Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange", J. Photochem. Photobiol. B, 178, 33 (2018).   DOI
31 J. W. Lee, Y. M. Lee, B. E. Park, and W. B. Ko, "Efficient Method for the Cleavage of Fullerene Oxides with Several Aromatic Amines under Ultrasonic Irradiation", Elast. Compos., 42, 1 (2007).
32 W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig, "Determination of size and concentration of gold nanoparticles from UV-Vis spectra", Anal. Chem., 79, 4215 (2007).   DOI
33 N. R. Jana, L. Gearheart, and C. J. Murphy, "Seeding growth for size control of 5-40 nm diameter gold nanoparticles", Langmuir, 17, 6782 (2001).   DOI