DOI QR코드

DOI QR Code

Effects of Foreign Plant Extracts on Cell Growth and Biofilm Formation of Streptococcus Mutans

해외 자생식물추출물이 Streptococcus mutans의 세포 성장 및 생물막 형성에 미치는 영향

  • Moon, Kyung Hoon (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Lee, Yun-Chae (Department of Integrated Biological Science, College of Natural Sciences, Pusan National University) ;
  • Kim, Jeong Nam (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • 문경훈 (부산대학교 자연과학대학 미생물학과) ;
  • 이윤채 (부산대학교 자연과학대학 생명시스템학과) ;
  • 김정남 (부산대학교 자연과학대학 미생물학과)
  • Received : 2019.03.16
  • Accepted : 2019.04.30
  • Published : 2019.06.30

Abstract

Chemically synthesized compounds are widely used in oral hygiene products. However, excessively long-term use of these chemicals can cause undesirable side effects such as bacterial tolerance, allergy, and tooth discoloration. To solve these issues, significant effort is put into the search for natural antibacterial agents. The aim of this study was to assess the extracts of foreign native plants that inhibit the growth and biofilm formation of Streptococcus mutans. Among the 300 foreign plant extracts used in this study, Chesneya nubigena (D. Don) Ali extract had the highest antimicrobial activity relatively against S. mutans with a clear zone of 9 mm when compared to others. This plant extract also showed anti-biofilm activity and bacteriostatic effect (minimal bactericidal concentration [MBC], 1.5 mg/ml). In addition, the plant extracts of 19 species decreased the ability of S. mutans to form biofilm at least a 6-fold in proportion to the tested concentrations. Of particular note, C. nubigena (D. Don) Ali extract was found to inhibit biofilm formation at the lowest concentration tested effectively. Therefore, our results reveal that C. nubigena (D. Don) Ali extract is a potential candidate for the development of antimicrobial substitutes, which might be effective for caries control as well, as demonstrated by its inhibitory effect on the persistence and pathogenesis of S. mutans.

화학적으로 합성된 물질들이 주로 구강 위생 제품에 사용된다. 그러나 이러한 화학 물질을 장기간 사용 시, 내성 발생이나 알레르기, 치아변색과 같은 부작용이 발생할 수 있다. 이런 문제를 해결하기 위해 식물로부터 유래된 항균 물질의 사용과 이러한 항균 물질들의 탐색을 위한 노력이 계속 진행되고 있다. 본 연구를 통해 Streptococcus mutans의 성장과 생물막 형성을 저해하는 해외 자생식물을 탐색하고자 하였다. 본 실험에는 총 300종의 해외 자생식물 추출물이 사용되었으며, 그 중 Chesneya nubigena (D. Don) Ali 추출물이 S. mutans에 대한 비교적 높은 항균활성을 나타내는 것으로 확인되었다(clear zone, 9 mm; MBC, 1.5 mg/ml). 또한, 19종의 식물추출물이 농도에 비례적으로 S. mutans의 생물막 형성량을 최소 6배 이상 감소시키는 것을 확인하였다. 특히, C. nubigena (D. Don) Ali 추출물은 1.25 mg/ml의 낮은 농도에서부터 효과적으로 생물막 형성을 억제하는 것으로 관찰하였다. 본 연구를 통하여 C. nubigena (D. Don) Ali 추출물이 S. mutans의 생육 성장과 생물막 형성 저해 효과를 나타내었으며, 이를 통해 본 식물추출물이 충치 예방과 치료에 효과가 있는 항균 대체재 개발의 후보 소재로써 평가된다.

Keywords

SMGHBM_2019_v29n6_712_f0001.png 이미지

Fig. 1. Evaluation of antimicrobial activity of plant extracts.

SMGHBM_2019_v29n6_712_f0002.png 이미지

Fig. 2. Minimum bactericidal concentration (MBC) of ethanol extract of C. nubigena (D. Don) Ali against S. mutans. 1, 0.8 mg/ml; 2, 0.9 mg/ml; 3, 1.0 mg/ml; 4, 1.1 mg/ml; 5, 1.2 mg/ml; 6, 1.3 mg/ml; 7, 1.4 mg/ml; 8, 1.5 mg/ml.

SMGHBM_2019_v29n6_712_f0003.png 이미지

Fig. 3. Effect of the plant extracts on biofilm formation.

SMGHBM_2019_v29n6_712_f0004.png 이미지

Fig. 4. Anti-biofilm effect of the plant extracts.

Table 1. List of plants used in this study

SMGHBM_2019_v29n6_712_t0001.png 이미지

Table 1. Continued

SMGHBM_2019_v29n6_712_t0002.png 이미지

Table 1. Continued

SMGHBM_2019_v29n6_712_t0003.png 이미지

Table 1. Continued

SMGHBM_2019_v29n6_712_t0004.png 이미지

Table 1. Continued

SMGHBM_2019_v29n6_712_t0005.png 이미지

References

  1. Babaahmady, K. G., Challacombe, S. J., Marsh, P. D. and Newman, H. N. 1998. Ecological study of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus spp. at sub-sites from approximal dental plaque from children. Caries Res. 32, 51-58. https://doi.org/10.1159/000016430
  2. Barnabe, M., Saraceni, C. H., Dutra-Correa, M. and Suffredini, I. B. 2014. The influence of Brazilian plant extracts on Streptococcus mutans biofilm. J. Appl. Oral. Sci. 22, 366-372. https://doi.org/10.1590/1678-775720140085
  3. Bidault, P., Chandad, F. and Grenier, D. 2007. Risk of bacterial resistance associated with systemic antibiotic therapy in periodontology. J. Can. Dent. Assoc. 73, 721-725.
  4. Choi, E. G. and Lee, H. J. 1994. The effect of a dentifrice containing several herb medicine of plaque and gingivitis. J. Kor. Acad. Oral Health 18, 401-409.
  5. Coudron, P. E. and Stratton, C. W. 1995. Use of time-kill methodology to assess antimicrobial combinations against metronidazole-susceptible and metronidazole-resistant strains of Helicobacter pylori. Antimicrob. Agents. Chemother. 39, 2641-2644. https://doi.org/10.1128/AAC.39.12.2641
  6. Dai, D. S., Liu, X., Yang, Y., Luo, X. M., Tang, R. X., Yin, Z. C. and Ren, H. Q. 2015. Protective effect of Salvia Przewalskii extract on puromycin-induced podocyte injury. Am. J. Nephrol. 42, 216-227. https://doi.org/10.1159/000440851
  7. Do, D. S., Min, B. S. and Bae, G. H. 1996. Isolation of the antibacterial constituents from Crassirhizomae rhizoma and evaluation of activity. J. Pharm. Sci. 40, 478-481.
  8. Dong, H., Geng, Y., Wang, X., Song, X., Wang, X. and Yu, J. 2018. Chemical constituents from Scindapsus officinalis (Roxb.) Schott. and their anti(-)inflammatory activities. Molecules 23, 2577. https://doi.org/10.3390/molecules23102577
  9. Dorman, H. J. and Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88, 308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  10. Eskandarian, T., Motamedifar, M. P., Arasteh, S. Eghbali, S., Adib, A. and Abdoli, Z. 2017. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on Streptococcus mutans: An in vitro study. Electron. Physician 9, 4042-4047. https://doi.org/10.19082/4042
  11. Garcia-Godoy, F. and Hicks, M. J. 2008. Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J. Am. Dent. Assoc. 139 Suppl, 25S-34S. https://doi.org/10.14219/jada.archive.2008.0352
  12. Gjermo, P., Rolla, G. and Arskaug, L. 1973. Effect on dental plaque formation and some in vitro properties of 12 bisbiguanides. J. Periodontal. Res. Suppl. 12, 81-92. https://doi.org/10.1111/j.1600-0765.1973.tb02169.x
  13. Hasan, S., Danishuddin, M. and Khan, A. U. 2015. Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiol. 15, 1. https://doi.org/10.1186/s12866-014-0320-5
  14. He, Z. D., Ma, C. Y., Zhang, H. J., Tan, G. T., Tamez, P., Sydara, K., Bouamanivong, S., Southavong, B., Soejarto, D. D., Pezzuto, J. M. and Fong, H. H. 2005. Antimalarial constituents from Nauclea orientalis (L.) L. Chem. Biodivers. 2, 1378-1386. https://doi.org/10.1002/cbdv.200590110
  15. Jain, I., Jain, P., Bisht, D., Sharma, A., Srivastava, B. and Gupta, N. 2015. Comparative evaluation of antibacterial efficacy of six Indian plant extracts against Streptococcus mutans. J. Clin. Diagn. Res. 9, ZC50-ZC53.
  16. Jang, G. H., Ahn, B. Y., Oh, S. H., Choi, D. S. and Kwon, Y. J. 2000. Anticariogenic effects of Coptis chinensis Franch extract. Kor. J. Food. Sci. Technol. 32, 1396-1402.
  17. Kalemba, D. and Kunicka, A. 2003. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10, 813-29. https://doi.org/10.2174/0929867033457719
  18. Kim, T. I., Yeom, H. R., Ryu, I. C., Bae, K. H. and Chung, C. P. 1996. Clinical and microbiological study on the effect of Magnoliae cortex and Ginkgo biloba extracts containing dentifrice in gingivitis. J. Periodontal. Implant. Sci. 26, 140-154
  19. Koga, T., Asakawa, H., Okahashi, N. and Hamada, S. 1986. Sucrose-dependent cell adherence and cariogenicity of serotype c Streptococcus mutans. J. Gen. Microbiol. 132, 2873-2883.
  20. Li, J. T., Dong, J. E., Liang, Z. S., Shu, Z. M. and Wan, G. W. 2008. Distributional difference of fat-soluble compounds in the roots, stems and leaves of four Salvia plants. Fen Zi Xi Bao Sheng Wu Xue Bao 41, 44-52.
  21. Loesche, W. J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50, 353-380. https://doi.org/10.1128/MMBR.50.4.353-380.1986
  22. Loo, C. Y., Corliss, D. A. and Ganeshkumar, N. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182, 1374-1382. https://doi.org/10.1128/JB.182.5.1374-1382.2000
  23. Marsh, P. D. 2003. Are dental diseases examples of ecological catastrophes? Microbiology 149, 279-294. https://doi.org/10.1099/mic.0.26082-0
  24. Mei, M. L., Chu, C. H., Low, K. H., Che, C. M. and Lo, E. C. 2013. Caries arresting effect of silver diamine fluoride on dentine carious lesion with S. mutans and L. acidophilus dual-species cariogenic biofilm. Med. Oral. Patol. Oral. Cir. Bucal. 18, e824-e831.
  25. Milgrom, P., Ly, K. A., Roberts, M. C., Rothen, M., Mueller, G. and Yamaguchi, D. K. 2006. Mutans streptococci dose response to xylitol chewing gum. J. Dent. Res. 85, 177-181. https://doi.org/10.1177/154405910608500212
  26. Mitchell, T. J. 2003. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat. Rev. Microbiol. 1, 219-230. https://doi.org/10.1038/nrmicro771
  27. O'Toole, G. A. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. 47, 2437
  28. Pham, H. N. T., Sakoff, J. A., Bond, D. R., Vuong, Q. V., Bowyer, M. C. and Scarlett, C. J. 2018. In vitro antibacterial and anticancer properties of Helicteres hirsuta Lour. leaf and stem extracts and their fractions. Mol. Biol. Rep. 45, 2125-2133. https://doi.org/10.1007/s11033-018-4370-x
  29. Sakanaka, S., Kim, M., Taniguchi, M. and Yamamoto, T. 1989. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agric. Biol. Chem. 53, 2307-2311. https://doi.org/10.1271/bbb1961.53.2307
  30. Skala, E., Kalemba, D., Wajs, A., Rozalski, M., Krajewska, U., Rozalska, B., Wieckowska-Szakiel, M. and Wysokinska, H. 2007. In vitro propagation and chemical and biological studies of the essential oil of Salvia przewalskii Maxim. Z. Naturforsch. C. 62, 839-848. https://doi.org/10.1515/znc-2007-11-1212
  31. Stewart, P. S. and Costerton, J. W. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1
  32. Tanzer, J. M. 1995. Dental caries is a transmissible infectious disease: the Keyes and Fitzgerald revolution. J. Dent. Res. 74, 1536-1542. https://doi.org/10.1177/00220345950740090601
  33. Wiwattanarattanabut, K., Choonharuangdej, S. and Srithavaj, T. 2017. In vitro anti-cariogenic plaque effects of essential oils extracted from culinary herbs. J. Clin. Diagn. Res. 11, DC30-DC35.
  34. Yamamoto, H. and Ogawa, T. 2002. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotechnol. Biochem. 66, 921-924. https://doi.org/10.1271/bbb.66.921
  35. Yu, H. H., Seo, S. J., Kim, Y. H., Lee, H. S., Kim, K. J., Jeon, B. H. and You, Y. O. 2003. Effect of Asarum sieboldii extracts on the growth, acid production, adhesion, and insoluble glucan synthesis of Streptococcus mutans. J. Physiol. Pathol. Kor. Med. 17, 666-671.
  36. Yu, Y. J., Kwak, W. A., Cho, J. G., Chang, H. S., Kwon, H. K., Lee, S. I., Park, Y. S. and Park, J. H. 1996. Effect of grapefruit seed, Cassiae torae Semen and Angelicae gigantis Radix on growth Streptococcus mutans. J. Kor. Acad. Oral Health 20, 107-120.
  37. Zhang, M. L., Wen, Z. B., Hao, X. L., Byalt, V. V., Sukhorukov, A. P. and Sanderson, S. C. 2015. Taxonomy, phylogenetics and biogeography of Chesneya (Fabaceae), evidenced from data of three sequences, ITS, trnS-trnG, and rbcL. Biochem. Syst. Ecol. 63, 80-89. https://doi.org/10.1016/j.bse.2015.09.017