DOI QR코드

DOI QR Code

비정질 산화물 SiZnSnO 반도체 박막의 전기적 특성 분석

Investigation on Electrical Property of Amorphous Oxide SiZnSnO Semiconducting Thin Films

  • 변재민 (청주대학교 반도체공학과) ;
  • 이상렬 (청주대학교 반도체공학과)
  • Byun, Jae Min (Department of Semiconductor Engineering, Cheongju University) ;
  • Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
  • 투고 : 2019.05.16
  • 심사 : 2019.05.30
  • 발행 : 2019.07.01

초록

We investigated the electrical characteristics of amorphous silicon-zinc-tin-oxide (a-SZTO) thin films deposited by RF-magnetron sputtering at room temperature depending on the deposition time. We fabricated a thin film transistor (TFT) with a bottom gate structure and various channel thicknesses. With increasing channel thickness, the threshold voltage shifted negatively from -0.44 V to -2.18 V, the on current ($I_{on}$) and field effect mobility (${\mu}_{FE}$) increased because of increasing carrier concentration. The a-SZTO film was fabricated and analyzed in terms of the contact resistance and channel resistance. In this study, the transmission line method (TLM) was adopted and investigated. With increasing channel thickness, the contact resistance and sheet resistance both decreased.

키워드

JJJRCC_2019_v32n4_272_f0001.png 이미지

Fig. 1. The bottom gate schematic structure of the (a) TFT and (b) TLM.

JJJRCC_2019_v32n4_272_f0002.png 이미지

Fig. 2. The transfer curve of a-SZTO TFT as a function of channel thickness.

JJJRCC_2019_v32n4_272_f0003.png 이미지

Fig. 3. The total resistances as a function of the channel length with various Vg were measured using the transmission line method (TLM) depending on the deposition time, (a) 3 min, (b) 5 min, and (c) 7 min.

JJJRCC_2019_v32n4_272_f0004.png 이미지

Fig. 4. The (a) Rc and (b) Rsh depending on the deposition time.

Table 1. The electronic characteristics of a-SZTO depending on the deposition time.

JJJRCC_2019_v32n4_272_t0001.png 이미지

참고문헌

  1. J. K. Jeong, Semicond. Sci. Technol., 26, 034008 (2011). [DOI: https://doi.org/10.1088/0268-1242/26/3/034008]
  2. Y. Chen, D. Geng, and J. Jang, IEEE J. Electron Devices Soc., 6, 214 (2018). [DOI: https://doi.org/10.1109/jeds.2018.2790954]
  3. T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, J. Soc. Inf. Disp., 15, 17 (2007). [DOI: https://doi.org/10.1889/1.2451545]
  4. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater., 24, 2945 (2012). [DOI: https://doi.org/10.1002/adma.201103228]
  5. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]
  6. C. L. Tien, K. C. Yu, T. Y. Tsai, and M. C. Liu, Appl. Surf. Sci., 354, 79 (2015). [DOI: https://doi.org/10.1016/j.apsusc.2015.02.154]
  7. K. M, Ko and S. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 282 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.5.282]
  8. S. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 580 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.8.580]
  9. E. Chong, I. Kang, C. H. Park, and S. Y. Lee, Thin Solid Films, 534, 609 (2013). [DOI: https://doi.org/10.1016/j.tsf.2013.02.033]
  10. P. B. Shea and J. Kanicki, J. Appl. Phys., 98, 014503 (2005). [DOI: https://doi.org/10.1063/1.1949713]
  11. B. H. Lee and S. Y. Lee, Phys. Status Solidi A, 215, 1700698 (2018). [DOI: https://doi.org/10.1002/pssa.201700698]
  12. C.P.T. Nguyen, T. T. Trinh, J. Raja, A.H.T. Le, Y. J. Lee, V. A. Dao, and J. Yi, Mater. Sci. Semicond. Process., 39, 649 (2015). [DOI: https://doi.org/10.1016/j.mssp.2015.05.069]