Fig. 1 The experimental platform for the autonomous system
Fig. 2 Temperature change before/after control PC tuning
Fig. 3 Structure of the autonomous vehicles system
Fig. 4 Software architecture of Hye Ahn program
Fig. 8 SVM decision tree
Fig. 9 Grid for SVM feature extraction
Fig. 10 Accuracy of MVP-CS with conventional method by Distance
Fig. 11 Accuracy of MVP-CS and MVP-YOLO by distance
Fig. 12 ROI for obstacle detection
Fig. 13 Setting the length of the ROI
Fig. 14 Setting the offset value
Fig. 15 Setting the candidate of danger point
Fig. 16 Operation principle of obstacle avoid algorithm
Fig. 17 The areas where avoidance algorithm cannot work
Fig. 5 (a) Before and (b) after applying HIX algorithm
Fig. 6 (a) Input Image, (b) ELIX rescan, (c) ILT rescan 1 and (d) ILT rescan 2
Fig. 7 (a) Before and (b) after applying NPC algorithm
Table 1 Specifications of the sensors
Table 2 Detail components of the controller
Table 3 Average processing time of 10 executions
References
- 정동규, 김선형, 2016, "지능형 자동차 현황과 향후 전망", 한국정보기술학회지, Vol. 14, No. 2, pp. 21-26.
- 이민채, 한재현, 장철훈, 선우명호, 2013, "영상 및 레이저레이더 정보융합을 통한 자율주행자동차의 주행환경인식 및 추적방법", 한국지능시스템학회지, Vol. 23, No. 1, pp. 35-45.
- Choi, G., Lee, C., Lee, J., Lim, Y., Seo, J. and Shin, k., 2018, "Study on Sensors and Algorithms for Autonomous Vehicle", ESIT, Vol. 3, No. 80.
- Chang, F., Chen, Z, 2014, and Liu, C., "Rapid Multiclass Traffic Sign Detection in High-Resolution Images", IEEE Transactions on Intelligent Transportation Systems, Vol. 15, No. 6, pp. 2394-2403. https://doi.org/10.1109/TITS.2014.2314711
- Ahn, H. and Kim, J., 2011, Corporate credit rating using multiclass classification models with order information. World Academy of Science, Engineering and Technology, Vol. 5, No. 12, pp. 1783-1788.
- Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., Hu, S., 2016, "Traffic-Sign Detection and Classification in the Wild", IEEE Conference on Computer Vision and Pattern Recognition, pp. 2110-2118, doi:10.1109/cvpr.2016.232.
- Farhadi, A. and Redmon, J., 2018, "YOLOv3: An incremental improvement", arXiv: 1803.10827.
- Timothy Masters, 2015, "Deep Belief Nets in C++ and CUDA C", Apress, Vol. 3.
- 이호준, 채흥석, 서호태, 이경수, 2018, "자율주행을 위한 레이더 기반 인지 알고리즘의 정량적 분석", 한국자동차안전학회, Vol. 10, No. 2, pp. 29-35. https://doi.org/10.22680/KASA2018.10.2.029
- Han, J., Kim, D., Lee, M. and Sunwoo, M., 2012, "Enhanced road boundary and obstacle detection using a downward-looking LiDAR sensor", IEEE Transactions on Vehicular Technology, Vol. 61, No. 3, pp. 971-985. https://doi.org/10.1109/TVT.2012.2182785