DOI QR코드

DOI QR Code

Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector

작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향

  • 조인수 (숭실대학교 대학원 기계공학과) ;
  • 이진욱 (숭실대학교 기계공학부)
  • Received : 2019.05.02
  • Accepted : 2019.06.18
  • Published : 2019.06.30

Abstract

Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

Keywords

OMHHBZ_2019_v24n2_66_f0001.png 이미지

Fig. 1 Driving current wave of piezo injector

OMHHBZ_2019_v24n2_66_f0002.png 이미지

Fig. 2 Nozzle opening/closing stage of piezo injector

OMHHBZ_2019_v24n2_66_f0003.png 이미지

Fig. 3 Flow chart showing hydraulic circuit system of piezo injector

OMHHBZ_2019_v24n2_66_f0004.png 이미지

Fig. 5 Verification of new analytic model with experi-mental result

OMHHBZ_2019_v24n2_66_f0005.png 이미지

Fig. 6 Verification of new analytic model at control chamber

OMHHBZ_2019_v24n2_66_f0006.png 이미지

Fig. 7 Verification of new analytic model at delivery chamber

OMHHBZ_2019_v24n2_66_f0007.png 이미지

Fig. 10 Kinematic viscosity at control chamber, pilot valve, nozzle

OMHHBZ_2019_v24n2_66_f0008.png 이미지

Fig. 11 Fluctuation of fuel density and kinematic viscosity at control chamber and delivery chamber

OMHHBZ_2019_v24n2_66_f0009.png 이미지

Fig. 4 AMESim model corresponding to piezo injector's internal structure

OMHHBZ_2019_v24n2_66_f0010.png 이미지

Fig. 8 Fuel properties by temperature variation

OMHHBZ_2019_v24n2_66_f0011.png 이미지

Fig. 9 Quantity of fuel density at control chamber, pilot valve, nozzle

OMHHBZ_2019_v24n2_66_f0012.png 이미지

Fig. 12 Needle displacement and pressure variation at delivery chamber

OMHHBZ_2019_v24n2_66_f0013.png 이미지

Fig. 13 Injection rate at difference temperature

Table 1 Specific of Bypass type piezo injector

OMHHBZ_2019_v24n2_66_t0001.png 이미지

Table 2 Essential elements list of piezo injector mode in AMESim environment

OMHHBZ_2019_v24n2_66_t0002.png 이미지

Table 3 Numerical conditions

OMHHBZ_2019_v24n2_66_t0003.png 이미지

References

  1. 장은정, 김성우, 민경일, 박천규, 하종한, 이봉희, "연료물성에 따른 경유 차량의 저온성능 영향 연구", 한국에너지학회, Vol. 24, No. 2, 2015.
  2. 김두현, "스프레이 점화에 대한 연료 물성의 영향:수치실험", 한국자동차공학회 추계학술대회 및 전시회, Vol. 2018, No. 11, 2018.
  3. 이민호, 임재혁, 김기호, 정충섭, "연료물성 및 환경조건에 따른 시험차량의 배출가스 특성에 관한 연구", 한국자동차공학회 추계학술대회 및 전시회, Vol. 2013, No. 11, 2013.
  4. 조상곤, "디젤연료 온도변화가 기관성능 및 연소특성에 관한 연구", 한국동력기계공학회지, Vol. 21, No. 6, 110-116, 2017. https://doi.org/10.9726/KSPSE.2017.21.6.110
  5. 이진우, "디젤 연료 온도에 따른 분무 발달 특성", 한국산학기술학회 논문지, Vol. 17, No. 3, 270-275, 2016.
  6. Jin-Wook Lee and Kyoung-Doug Min, "Analysis of Macroscopic Spray Characteristics of Diesel Injectors with Three Different Needle Driving Type in Common Rail Direct Injection System", Journal of the Korean Society of Marine Engineering, Vol. 30, No. 3, pp. 351-358, 2006.
  7. A. Arpaia, A. E. Catania, A. Ferrari, and E. Spessa, "Development and Application of an Advanced Numerical Model for CR Piezo Indirect Acting Injection Systems", SAE 2010-01-1503, 2010.