DOI QR코드

DOI QR Code

A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method

효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법

  • Cho, Jin-Rae (Department of Naval Architecture and Ocean Engineering, Hongik University)
  • 조진래 (홍익대학교 조선해양공학과)
  • Received : 2019.03.17
  • Accepted : 2019.05.29
  • Published : 2019.06.30

Abstract

This paper introduces a near-tip grid refinement and explores its usefulness in the crack analysis by the natural element method(NEM). As a sort of local h-refinement in finite element method(FEM), a NEM grid is locally refined around the crack tip showing high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane strain rectangular plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for comparison. Unlike the uniform grid, the refined grid provides near-tip stress distributions similar to the analytic solutions and the fine grid. In addition, the refined grid shows higher convergence than the uniform grid, the global relative error to the total number of grid points.

본 논문은 균열선단 그리드 세분화기법을 소개하고 자연요소법을 이용한 균열해석에 이 기법을 적용함으로서 그 유효성을 고찰하였다. 유한요소법에 있어서의 국부적 h-세분화와 같이 높은 응력 특이성을 보이는 균열선단 주위를 따라 자연요소법 그리드를 국부적으로 세분화하였다. 본 논문에서 소개되는 그리드 세분화기법은 2단계로 구성되며, 1단계에서는 그리드 점들이 추가되고 2단계에서는 균열선단 절점을 공유하는 델라우니 삼각형들이 나뉘게 된다. 제안하는 그리드 세분화기법의 타당성과 균열해석에서의 유효성을 입증하기 위해 대칭 엣지 균열을 갖는 평면 변형률 상태의 사각 평판을 해석하였다. 수치해석 결과의 상대비교를 위해 균일한 자연요소 그리드를 이용한 균열해석도 수행하였으며, 균열선단이 세분화된 그리드는 균일한 그리드와는 달리 이론해와 조밀한 그리드와 유사한 균열선단 응력분포를 나타내었다. 또한, 총 그리드 절점수에 대한 해석결과의 전역 상대오차에서도 세분화된 그리드가 균일한 그리드에 비해 높은 수렴율 나타내었다.

Keywords

References

  1. ASTM (1965) Fracture Toughness Testing and Its Applications, ASTM International, Baltimore, Md.
  2. Belytschko, T., Lu, Y.Y., Gu, L. (1994) Element-free Galerkin Methods, Int. J. Numer. Methods Eng., 37(2), pp.229-256. https://doi.org/10.1002/nme.1620370205
  3. Braun, J., Sambridge, M.A. (1995) A Numerical Method for Solving Partial Differential Equations on Highly Irregular Evolving Grids. Nature, 376 (655-660), pp.655-660. https://doi.org/10.1038/376655a0
  4. Basoum, R.S. (1976) On the use of Isoparametric Finite Elements in Linear Fracture Mechanics, Int. J. Numer. Methods Eng., 10(1), pp.25-37. https://doi.org/10.1002/nme.1620100103
  5. Chinesta, F., Cescotto, S., Cueto, E., Lorong, P. (2011) Natural Element Method for the Simulation of Structures and Processes, John Wiley & Sons, New Jersey.
  6. Cho, J.R., Lee, H.W. (2006) A Petrov-Galerkin Natural Element Method for Securing the Numerical Integration Accuracy, J. Mech. Sci. & Technol., 20(1), pp.94-109. https://doi.org/10.1007/BF02916204
  7. Cho, J.R., Lee, H.W., Yoo, W.S. (2013) Natural Element Approximation of Reissner-Mindlin Plate for Locking-Free Numerical Analysis of Plate-like Thin Elastic Structures, Comput. Methods Appl. Mech. & Eng., 256(1), pp.17-28. https://doi.org/10.1016/j.cma.2012.12.015
  8. Dolbow, J., Belytschko, T. (1999) Numerical Integration of the Galerkin Weak Form in Meshfree Methods, Comput. Mech., 23(3), pp.219-230. https://doi.org/10.1007/s004660050403
  9. Duarte, C.A., Oden, J.T. (1996) An h-p Adaptive Method using Clouds, Comput. Methods Appl. Mech. & Eng., 139, pp.237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
  10. Lee, H.W., Cho, J.R. (2008) The Petrov-Galerkin Natural Element Method: I. Concepts, J. Comput. Struct. Eng. Inst. Korea, 18(2), pp.103-111.
  11. Liu, W.K., Jun, S., Zhang, Y.F. (1995) Reproducing Kernel Particle Methods, Int. J. Numer. Methods Fluids, 20(8-9), pp.1081-1106. https://doi.org/10.1002/fld.1650200824
  12. Sukumar, N., Moran, B., Belytschko, T. (1998) The Natural Element is Solid Mechanics, Int. J. Numer. Methods Eng., 43, pp.839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
  13. Sukumar, N., Moran, B. (1999) $C^1$ Natural Neighbor Interpolant for Partial Differential Equations, Numer. Methods Partial Differ. Equ., 15(4), pp.417-447. https://doi.org/10.1002/(SICI)1098-2426(199907)15:4<417::AID-NUM2>3.0.CO;2-S
  14. Szabo, B., Babuska, I. (1991) Finite Element Analysis, John Wiley & Sons, New York.
  15. Tracey, D.M. (1971) Finite Elements for Determining of Crack Tip Elastic Stress Intensity Factors, Eng. Fract. Mech., 3(3), pp.255-265. https://doi.org/10.1016/0013-7944(71)90036-1
  16. Zu, T., Atluri, S.N. (1998) A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Galerkin Method, Comput. Mech., 21(3), pp.211-222. https://doi.org/10.1007/s004660050296