DOI QR코드

DOI QR Code

Molecular Pathophysiology of Ossification of the Posterior Longitudinal Ligament (OPLL)

  • Nam, Dae Cheol (Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital) ;
  • Lee, Hyun Jae (Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Hwang, Sun-Chul (Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital)
  • Received : 2019.03.08
  • Accepted : 2019.04.09
  • Published : 2019.07.01

Abstract

Ossification of the posterior longitudinal ligament (OPLL) can be defined as an ectopic ossification in the tissues of spinal ligament showing a hyperostotic condition. OPLL is developed mostly in the cervical spine and clinical presentations of OPLL are majorly myelopathy and/or radiculopathy, with serious neurological pathology resulting in paralysis of extremities and disturbances of motility lowering the quality of life. OPLL is known to be an idiopathic and multifactorial disease, which genetic factors and non-genetic factors including diet, obesity, physical strain on the posterior longitudinal ligament, age, and diabetes mellitus, are involved into the pathogenesis. Up to now, surgical management by decompressing the spinal cord is regarded as standard treatment for OPLL, although there might be the risk of development of reprogression of ossification. The molecular pathogenesis and efficient therapeutic strategy, especially pharmacotherapy and/or preventive intervention, of OPLL has not been clearly elucidated and suggested. Therefore, in this review, we tried to give an overview to the present research results on OPLL, in order to shed light on the potential pharmacotherapy based on molecular pathophysiologic aspect of OPLL, especially on the genetic/genomic factors involved into the etiology of OPLL.

Keywords

References

  1. Abiola, R., Rubery, P. and Mesfin, A. (2016) Ossification of the posterior longitudinal ligament: etiology, diagnosis, and outcomes of nonoperative and operative management. Global Spine J. 6, 195-204. https://doi.org/10.1055/s-0035-1556580
  2. Akune, T., Ogata, N., Seichi, A., Ohnishi, I., Nakamura, K. and Kawaguchi, H. (2001) Insulin secretory response is positively associated with the extent of ossification of the posterior longitudinal ligament of the spine. J. Bone Joint Surg. Am. 83-A, 1537-1544.
  3. Asari, T., Furukawa, K., Tanaka, S., Kudo, H., Mizukami, H., Ono, A., Numasawa, T., Kumagai, G., Motomura, S., Yagihashi, S. and Toh, S. (2012) Mesenchymal stem cell isolation and characterization from human spinal ligaments. Biochem. Biophys. Res. Commun. 417, 1193-1199. https://doi.org/10.1016/j.bbrc.2011.12.106
  4. Beom, J. Y. and Seo, H. Y. (2018) the need for early tracheostomy in patients with traumatic cervical cord injury. Clin. Orthop. Surg. 10, 191-196. https://doi.org/10.4055/cios.2018.10.2.191
  5. Bonewald, L. F. and Dallas, S. L. (1994) Role of active and latent transforming growth factor beta in bone formation. J. Cell. Biochem. 55, 350-357. https://doi.org/10.1002/jcb.240550312
  6. Bonewald, L. F. and Mundy, G. R. (1990) Role of transforming growth factor-beta in bone remodeling. Clin. Orthop. Relat. Res. 250, 261-276.
  7. Chen, D., Liu, Y., Yang, H., Chen, D., Zhang, X., Fermandes, J. C. and Chen, Y. (2016) Connexin 43 promotes ossification of the posterior longitudinal ligament through activation of the ERK1/2 and p38 MAPK pathways. Cell Tissue Res. 363, 765-773. https://doi.org/10.1007/s00441-015-2277-6
  8. Chen, G., Deng, C. and Li, Y.P. (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272-288. https://doi.org/10.7150/ijbs.2929
  9. Chen, Y., Wang, X., Yang, H., Miao, J., Liu, X. and Chen, D. (2014) Upregulated expression of PERK in spinal ligament fibroblasts from the patients with ossification of the posterior longitudinal ligament. Eur. Spine J. 23, 447-454. https://doi.org/10.1007/s00586-013-3053-5
  10. Chikuda, H., Seichi, A. and Takeshita, K. (2011) Acute cervical spinal cord injury complicated by preexisting ossification of the posterior longitudinal ligament: a multicenter study. Spine 36, 1453-1458. https://doi.org/10.1097/BRS.0b013e3181f49718
  11. Fujimori, T., Le, H., Hu, S.S., Chin, C., Pekmezci, M., Schairer, W., Tay, B. K., Hamasaki, T., Yoshikawa, H. and Iwasaki, M. (2015) Ossification of the posterior longitudinal ligament of the cervical spine in 3161 patients: a CT-based study. Spine 40, E394-E403. https://doi.org/10.1097/BRS.0000000000000791
  12. Furukawa, K. (2006) Current topics in pharmacological research on bone metabolism: molecular basis of ectopic bone formation induced by mechanical stress. J. Pharmacol. Sci. 100, 201-204. https://doi.org/10.1254/jphs.FMJ05004X4
  13. Furukawa, K. (2008) Pharmacological aspect of ectopic ossification in spinal ligament tissues. Pharmacol. Ther. 118, 352-358. https://doi.org/10.1016/j.pharmthera.2008.03.007
  14. Han, I. B., Ropper, A. E., Jeon, Y. J., Park, H. S., Shin, D. A., Teng, Y. D., Kuh, S. U. and Kim, N. K. (2013) Association of transforming growth factor-beta 1 gene polymorphism with genetic susceptibil-ity to ossification of the posterior longitudinal ligament in Korean patients. Genet. Mol. Res. 12, 4807-4816. https://doi.org/10.4238/2013.February.28.26
  15. He, Z., Zhu, H., Ding, L., Xiao, H., Chen, D. and Xue, F. (2013) Association of NPP1 polymorphism with postoperative progression of ossification of the posterior longitudinal ligament in Chinese patients. Genet. Mol. Res. 12, 4648-4655. https://doi.org/10.4238/2013.October.18.3
  16. Horikoshi, T., Maeda, K., Kawaguchi, Y., Chiba, K., Mori, K., Koshizuka, Y., Hirabayashi, S., Sugimori, K., Matsumoto, M., Kawaguchi, H., Takahashi, M., Inoue, H., Kimura, T., Matsusue, Y., Inoue, I., Baba, H., Nakamura, K. and Ikegawa, S. (2006) A large-scale genetic association study of ossification of the posterior longitudinal ligament of the spine. Hum Genet. 119, 611-616. https://doi.org/10.1007/s00439-006-0170-9
  17. Hosoda, Y., Yoshimura, Y. and Higaki, S. (1981) A new breed of mouse showing multiple osteochondral lesions - twy mouse. Ryumachi 21 Suppl, 157-164.
  18. Ikeda, Y., Nakajima, A., Aiba, A., Koda, M., Okawa, A., Takahashi, K. and Yamazaki, M. (2011) Association between serum leptin and bone metabolic markers, and the development of heterotopic ossification of the spinal ligament in female patients with ossification of the posterior longitudinal ligament. Eur. Spine J. 20, 1450-1458. https://doi.org/10.1007/s00586-011-1688-7
  19. Ikegawa, S. (2014) Genomic study of ossification of the posterior longitudinal ligament of the spine. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 90, 405-412. https://doi.org/10.2183/pjab.90.405
  20. Iwasaki, K., Furukawa, K. I., Tanno, M., Kusumi, T., Ueyama, K., Tanaka, M., Kudo, H., Toh, S., Harata, S. and Motomura, S. (2004) Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcif. Tissue Int. 74, 448-457. https://doi.org/10.1007/s00223-002-0021-1
  21. Iwasawa, T., Iwasaki, K., Sawada, T., Okada, A., Ueyama, K., Motomura, S., Harata, S., Inoue, I., Toh, S. and Furukawa, K. I. (2006) Pathophysiological role of endothelin in ectopic ossification of human spinal ligaments induced by mechanical stress. Calcif. Tissue Int. 79, 422-430. https://doi.org/10.1007/s00223-006-0147-7
  22. Jekarl, D. W., Paek, C. M., An, Y. J., Kim, Y. J., Kim, M., Kim, Y., Lee, J. and Sung, C. H. (2013) TGFBR2 gene polymorphism is associated with ossification of the posterior longitudinal ligament. J. Clin. Neurosci. 20, 453-456. https://doi.org/10.1016/j.jocn.2012.05.031
  23. Kamiya, M., Harada, A., Mizuno, M., Iwata, H. and Yamada, Y. (2001) Association between a polymorphism of the transforming growth factor-beta1 gene and genetic susceptibility to ossification of the posterior longitudinal ligament in Japanese patients. Spine 26, 1264-1266. https://doi.org/10.1097/00007632-200106010-00017
  24. Karasugi, T., Nakajima, M., Ikari, K.; Genetic Study Group of Investigation Committee on Ossification of the Spinal Ligaments, Tsuji, T., Matsumoto, M., Chiba, K., Uchida, K., Kawaguchi, Y., Mizuta, H., Ogata, N., Iwasaki, M., Maeda, S., Numasawa, T., Abumi, K., Kato, T., Ozawa, H., Taguchi, T., Kaito, T., Neo, M., Yamazaki, M., Tadokoro, N., Yoshida, M., Nakahara, S., Endo, K., Imagama, S., Demura, S., Sato, K., Seichi, A., Ichimura, S., Watanabe, M., Watanabe, K., Nakamura, Y., Mori, K., Baba, H., Toyama, Y. and Ikegawa, S. (2013) A genome-wide sib-pair linkage analysis of ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Metab. 31, 136-143. https://doi.org/10.1007/s00774-012-0404-y
  25. Kashii, M., Matuso, Y., Sugiura, T., Fujimori, T., Nagamoto, Y., Makino, T., Kaito, T., Ebina, K., Iwasaki, M. and Yoshikawa, H. (2016) Circulating sclerostin and dickkopf-1 levels in ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Metab. 34, 315-324. https://doi.org/10.1007/s00774-015-0671-5
  26. Kawaguchi, Y., Furushima, K., Sugimori, K., Inoue, I. and Kimura, T. (2003) Association between polymorphism of the transforming growth factor-beta1 gene with the radiologic characteristic and ossification of the posterior longitudinal ligament. Spine 28, 1424-1426. https://doi.org/10.1097/01.BRS.0000068245.27017.9F
  27. Kawaguchi, Y., Nakano, M., Yasuda, T., Seki, S., Hori, T. and Kimura, T. (2013) Ossification of the posterior longitudinal ligament in not only the cervical spine, but also other spinal regions: analysis using multidetector computed tomography of the whole spine. Spine 38, E1477-E1482. https://doi.org/10.1097/BRS.0b013e3182a54f00
  28. Kawaguchi, Y., Nakano, M., Yasuda, T., Seki, S., Hori, T., Suzuki, K., Makino, H. and Kimura, T. (2016) Characteristics of ossification of the spinal ligament; incidence of ossification of the ligamentum flavum in patients with cervical ossification of the posterior longitudinal ligament - analysis of the whole spine using multidetector CT. J. Orthop. Sci. 21, 439-445. https://doi.org/10.1016/j.jos.2016.04.009
  29. Kim, B. S., Moon, M. S., Yoon, M. G., Kim, S. T., Kim, S. J., Kim, M. S. and Kim, D. S. (2018) Prevalence of diffuse idiopathic skeletal hyperostosis diagnosed by whole spine computed tomography: a preliminary study. Clin. Orthop. Surg. 10, 41-46. https://doi.org/10.4055/cios.2018.10.1.41
  30. Kim, K. H., Kuh, S. U., Park, J. Y., Lee, S. J., Park, H. S., Chin, D. K., Kim, K. S. and Cho, Y. E. (2014) Association between BMP-2 and COL6A1 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the cervical spine in Korean patients and family members. Genet. Mol. Res. 13, 2240-2247. https://doi.org/10.4238/2014.March.31.4
  31. Kim, Y. H., Ha, K. Y. and Kim, S. I. (2017) Spinal cord injury and related clinical trials. Clin. Orthop. Surg. 9, 1-9. https://doi.org/10.4055/cios.2017.9.1.1
  32. Kobashi, G., Washio, M., Okamoto, K., Sasaki, S., Yokoyama, T., Miyake, Y., Sakamoto, N., Ohta, K., Inaba, Y. and Tanaka, H.; Japan Collaborative Epidemiological Study Group for Evaluation of Ossification of the Posterior Longitudinal Ligament of the Spine Risk. (2004) High body mass index after age 20 and diabetes mellitus are independent risk factors for ossification of the posterior longitudinal ligament of the spine in Japanese subjects: a case-control study in multiple hospitals. Spine 29, 1006-1010. https://doi.org/10.1097/00007632-200405010-00011
  33. Koga, H., Sakou, T., Taketomi, E., Hayashi, K., Numasawa, T., Harata, S., Yone, K., Matsunaga, S., Otterud, B., Inoue, I. and Leppert, M. (1998) Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 62, 1460-1467. https://doi.org/10.1086/301868
  34. Kong, Q., Ma, X., Li, F., Guo, Z., Qi, Q., Li, W., Yuan, H., Wang, Z. and Chen, Z. (2007) COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament. Spine 32, 2834-2838. https://doi.org/10.1097/BRS.0b013e31815b761c
  35. Koshizuka, Y., Kawaguchi, H., Ogata, N., Ikeda, T., Mabuchi, A., Seichi, A., Nakamura, Y., Nakamura, K. and Ikegawa, S. (2002) Nucleotide pyrophosphatase gene polymorphism associated with ossification of the posterior longitudinal ligament of the spine. J. Bone. Miner. Res. 17, 138-144. https://doi.org/10.1359/jbmr.2002.17.1.138
  36. Koyanagi, I., Iwasaki, Y., Hida, K., Imamura, H., Fujimoto, S. and Akino, M. (2003) Acute cervical cord injury associated with ossification of the posterior longitudinal ligament. Neurosurgery 53, 887-892. https://doi.org/10.1227/01.NEU.0000083590.84053.CC
  37. Lee, D. Y., Park, Y. J., Song, S. Y., Hwang, S. C., Kim, K. T. and Kim, D. H. (2018) The importance of early surgical decompression for acute traumatic spinal cord injury. Clin. Orthop. Surg. 10, 448-454. https://doi.org/10.4055/cios.2018.10.4.448
  38. Li, J. M., Zhang, Y., Ren, Y., Liu, B. G., Lin, X., Yang, J., Zhao, H. C., Wang, Y. J. and Song, L. (2014) Uniaxial cyclic stretch promotes osteogenic differentiation and synthesis of BMP2 in the C3H10T1/2 cells with BMP2 gene variant of rs2273073 (T/G). PLoS ONE 9, e106598. https://doi.org/10.1371/journal.pone.0106598
  39. Liang, C., Wang, P., Liu, X., Yang, C., Ma, Y., Yong, L., Zhu, B., Liu, X. and Liu, Z. (2018) Whole-genome sequencing reveals novel genes in ossification of the posterior longitudinal ligament of the thoracic spine in the Chinese population. J. Orthop. Surg. Res. 13, 324. https://doi.org/10.1186/s13018-018-1022-8
  40. Liu, X., Kumagai, G., Wada, K., Tanaka, T., Fujita, T., Sasaki, A., Furukawa, K. I. and Ishibashi, Y. (2017) Suppression of osteogenic differentiation in mesenchymal stem cells from patients with ossification of the posterior longitudinal ligament by a histamine-2-receptor antagonist. Eur. J. Pharmacol. 810, 156-162. https://doi.org/10.1016/j.ejphar.2017.07.013
  41. Maeda, S., Ishidou, Y., Koga, H, Taketomi, E., Ikari, K., Komiya, S., Takeda, J., Sakou, T. and Inoue, I. (2001) Functional impact of human collagen alpha2 (XI) gene polymorphism in pathogenesis of ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Res. 16, 948-957. https://doi.org/10.1359/jbmr.2001.16.5.948
  42. Marcellini, S., Henriquez, J. P. and Bertin, A. (2012) Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. BioEssays 34, 953-962. https://doi.org/10.1002/bies.201200061
  43. Matsui, H., Yudoh, K. and Tsuji, H. (1996) Significance of serum levels of type I procollagen peptide and intact osteocalcin and bone mineral density in patients with ossification of the posterior longitudinal ligaments. Calcif. Tissue Int. 59, 397-400. https://doi.org/10.1007/s002239900146
  44. Matsunaga, S., Sakou, T., Taketomi, E. and Komiya, S. (2004) Clinical course of patients with ossification of the posterior longitudinal ligament: a minimum 10-year cohort study. J. Neurosurg. 100, 245-248. https://doi.org/10.3171/spi.2004.100.3.0245
  45. Matsunaga, S. and Sakou, T. (2012) Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine 37, E309-E314. https://doi.org/10.1097/BRS.0b013e318241ad33
  46. Matsunaga, S., Yamaguchi, M., Hayashi, K. and Sakou, T. (1999) Genetic analysis of ossification of the posterior longitudinal ligament. Spine 24, 937-939. https://doi.org/10.1097/00007632-199905150-00002
  47. Medici, D. and Olsen, B. R. (2012) The role of endothelial-mesenchymal transition in heterotopic ossification. J. Bone Miner. Res. 27, 1619-1622. https://doi.org/10.1002/jbmr.1691
  48. Modder, U. I., Clowes, J. A., Hoey, K., Peterson, J. M., McCready, L., Oursler, M. J., Riggs, B. L. and Khosla, S. (2011) Regulation of circulating sclerostin levels by sex steroids in women and in men. J. Bone Miner. Res. 26, 27-34. https://doi.org/10.1002/jbmr.128
  49. Mori, K., Imai, S., Kasahara, T., Nishizawa, K., Mimura, T. and Matsusue, Y. (2014) Prevalence, distribution, and morphology of thoracic ossification of the posterior longitudinal ligament in japanese: results of CT-based cross-sectional study. Spine 39, 394-399. https://doi.org/10.1097/BRS.0000000000000153
  50. Morvan, F., Boulukos, K., Clement-Lacroix, P., Roman, R. S, Suc-Royer, I., Vayssiere, B., Ammann, P., Martin, P., Pinho, S., Pognonec, P., Mollat, P., Niehrs, C., Baron, R. and Rawadi, G. (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934-945. https://doi.org/10.1359/jbmr.060311
  51. Nakajima, M., Takahashi, A., Tsuji, T., Karasugi, T., Baba, H., Uchida, K., Kawabata, S., Okawa, A., Shindo, S., Takeuchi, K., Taniguchi, Y., Maeda, S., Kashii, M., Seichi, A., Nakajima, H., Kawaguchi, Y., Fujibayashi, S., Takahata, M., Tanaka, T., Watanabe, K., Kida, K., Kanchiku, T., Ito, Z., Mori, K., Kaito, T., Kobayashi, S., Yamada, K., Takahashi, M., Chiba, K., Matsumoto, M., Furukawa, K., Kubo, M., Toyama, Y.; Genetic Study Group of Investigation Committee on Ossification of the Spinal Ligaments and Ikegawa, S. (2014) A genome-wide association study identifies susceptibility loci for ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 46, 1012-1016. https://doi.org/10.1038/ng.3045
  52. Nelson, E. R., Wong, V. W., Krebsbach, P. H., Wang, S. C. and Levi, B. (2012) Heterotopic ossification following burn injury: the role of stem cells. J. Burn. Care. Res. 33, 463-470. https://doi.org/10.1097/BCR.0b013e31825af547
  53. Nishimura, R., Hata, K., Matsubara, T., Wakabayashi, M. and Yoneda, T. (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J. Biochem. 151, 247-254. https://doi.org/10.1093/jb/mvs004
  54. Nomura, A., Seya, K., Yu, Z., Daitoku, K., Motomura, S., Murakami, M., Fukuda, I. and Furukawa, K. (2013) CD34-negative mesenchymal stem-like cells may act as the cellular origin of human aortic valve calcification. Biochem. Biophys. Res. Commun. 440, 780-785. https://doi.org/10.1016/j.bbrc.2013.10.003
  55. Ohishi, H., Furukawa, K., Iwasaki, K., Ueyama, K., Okada, A., Motomura, S., Harata, S. and Toh, S. (2003) Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J. Pharmacol. Exp. Ther. 305, 818-824. https://doi.org/10.1124/jpet.102.047142
  56. Okamoto, K., Kobashi, G., Washio, M., Sasaki, S., Yokoyama, T., Miyake, Y., Sakamoto, N., Ohta, K., Inaba, Y. and Tanaka, H.; Japan Collaborative Epidemiological Study Group for Evaluation of Ossification of the Posterior Longitudinal Ligament of the Spine (OPLL) Risk. (2004) Dietary habits and risk of ossification of the posterior longitudinal ligaments of the spine (OPLL); findings from a casecontrol study in Japan. J. Bone Miner. Metab. 22, 612-617. https://doi.org/10.1007/s00774-004-0531-1
  57. Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y. and Ikegawa, S. (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 19, 271-273. https://doi.org/10.1038/956
  58. Pham, M. H., Attenello, F. J., Lucas, J., He, S., Stapleton, C. J. and Hsieh, P. C. (2011) Conservative management of ossification of the posterior longitudinal ligament. A review. Neurosurg. Focus 30, E2.
  59. Rahman, M. S., Akhtar, N., Jamil, H. M., Banik, R. S. and Asaduzzaman, S. M. (2015) TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 3, 15005. https://doi.org/10.1038/boneres.2015.5
  60. Ren, Y., Liu, Z. Z., Feng, J., Wan, H., Li, J. H., Wang, H. and Lin, X. (2012) Association of a BMP9 haplotype with ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. PLoS ONE 7, e40587. https://doi.org/10.1371/journal.pone.0040587
  61. Saetia, K., Cho, D., Lee, S., Kim, D. H. and Kim, S. D. (2011) Ossification of the posterior longitudinal ligament: a review. Neurosurg. Focus 30, E1.
  62. Sakou, T., Matsunaga, S. and Koga, H. (2000) Recent progress in the study of pathogenesis of ossification of the posterior longitudinal ligament. J. Orthop. Sci. 5, 310-315. https://doi.org/10.1007/s007760050169
  63. Sanchez-Duffhues, G., Hiepen, C., Knaus, P. and Ten Dijke, P. (2015) Bone morphogenetic protein signaling in bone homeostasis. Bone 80, 43-59. https://doi.org/10.1016/j.bone.2015.05.025
  64. Sawada, T., Kishiya, M., Kanemaru, K., Seya, K., Yokoyama, T., Ueyama, K., Motomura, S., Toh, S. and Furukawa, K. (2008) Possible role of extracellular nucleotides in ectopic ossification of human spinal ligaments. J. Pharmacol. Sci. 106, 152-161. https://doi.org/10.1254/jphs.FP0071224
  65. Shapiro, F., Cahill, C., Malatantis, G. and Nayak, R. C. (1995) Transmission electron microscopic demonstration of vimentin in rat osteoblast and osteocyte cell bodies and processes using the immunogold technique. Anat. Rec. 241, 39-48. https://doi.org/10.1002/ar.1092410107
  66. Shi, S., de Gorter, D. J., Hoogaars W. M., Hoen, P. A. and Ten Dijke, P. (2013) Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cell Mol. Life Sc. 70, 407-423. https://doi.org/10.1007/s00018-012-1054-x
  67. Shin, H. K., Jeong, H. J., Kim, E., Park, J. H, Park, S. J. and Cho, Y. (2017) Should we check the routine postoperative MRI for hematoma in spinal decompression surgery? Clin. Orthop. Surg. 9, 184-189. https://doi.org/10.4055/cios.2017.9.2.184
  68. Shin, J. H., Steinmetz, M. P., Benzel, E. C. and Krishnaney, A. A. (2011) Dorsal versus ventral surgery for cervical ossification of the posterior longitudinal ligament: considerations for approach selection and review of surgical outcomes. Neurosurg. Focus 30, E8.
  69. Stapleton, C. J., Pham, M. H., Attenello, F. J. and Hsieh, P. C. (2011) Ossification of the posterior longitudinal ligament: genetics and pathophysiology. Neurosurg. Focus 30, E6.
  70. Sugimori, K., Kawaguchi, Y., Ohmori, K., Kanamori M., Ishihara, H. and Kimura, T. (2003) Significance of bone formation markers in patients with ossification of the posterior longitudinal ligament of the spine. Spine 28, 378-379. https://doi.org/10.1097/01.BRS.0000048468.47540.66
  71. Sugita, D., Yayama, T., Uchida, K., Kokubo, Y., Nakajima, H., Yamagishi, A., Takeura, N. and Baba, H. (2013) Indian hedgehog signaling promotes chondrocyte differentiation in enchondral ossification in human cervical ossification of the posterior longitudinal ligament. Spine 38, E1388-E1396. https://doi.org/10.1097/BRS.0b013e3182a40489
  72. Sun, Y. and Mauerhan, D. R. (2012) Meniscal calcification, pathogenesis and implications. Curr. Opin. Rheumatol. 24, 152-157. https://doi.org/10.1097/BOR.0b013e32834e90c1
  73. Szulc, P., Boutroy, S., Vilayphiou, N., Schoppet, M., Rauner, M., Chapurlat, R., Hamann, C. and Hofbauer, L. C. (2013) Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J. Bone Miner. Res. 28, 1760-1770. https://doi.org/10.1002/jbmr.1888
  74. Tahara, M., Aiba, A., Yamazaki, M., Ikeda, Y, Goto, S., Moriya, H. and Okawa, A. (2005) The extent of ossification of posterior longitudinal ligament of the spine associated with nucleotide pyrophosphatase gene and leptin receptor gene polymorphisms. Spine 30, 877-881. https://doi.org/10.1097/01.brs.0000160686.18321.ad
  75. Tanaka, T., Ikari, K., Furushima, K., Okada, A., Tanaka, H., Furukawa, K., Yoshida, K., Ikeda, T., Ikegawa, S., Hunt, S. C., Takeda, J., Toh, S., Harata, S., Nakajima, T. and Inoue, I. (2003) Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 73, 812-822. https://doi.org/10.1086/378593
  76. Terayama, K. (1989) Genetic studies on ossification of the posterior longitudinal ligament of the spine. Spine 14, 1184-1191. https://doi.org/10.1097/00007632-198911000-00009
  77. Tsukahara, S., Miyazawa, N., Akagawa, H., Forejtova, S., Pavelka, K., Tanaka, T., Toh, S., Tajima, A., Akiyama, I. and Inoue, I. (2005) COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine 30, 2321-2324. https://doi.org/10.1097/01.brs.0000182318.47343.6d
  78. Tu, T. H., Wu, J. C., Huang, W. C., Chang, H. K., Ko, C. C., Fay, L. Y., Wu, C. L. and Cheng, H. (2015) Postoperative nonsteroidal antiinflammatory drugs and the prevention of heterotopic ossification after cervical arthroplasty: analysis using CT and a minimum 2-year follow-up. J. Neurosurg. Spine 22, 447-453. https://doi.org/10.3171/2014.10.SPINE14333
  79. Uchida, K., Yayama, T., Sugita, D., Nakajima, H., Rodriguez Guerrero, A., Watanabe, S., Roberts, S., Johnson, W. E. and Baba, H. (2012) Initiation and progression of ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur. Spine J. 21, 149-155.
  80. Wang, H., Jin, W. and Li, H. (2018) Genetic polymorphisms in bone morphogenetic protein receptor type IA gene predisposes individuals to ossification of the posterior longitudinal ligament of the cervical spine via the smad signaling pathway. BMC Musculoskelet. Disord. 19, 61. https://doi.org/10.1186/s12891-018-1966-1
  81. Wang, H., Liu, D., Yang, Z., Tian, B., Li, J., Meng, X., Wang, Z., Yang, H. and Lin, X. (2008) Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur. Spine J. 17, 956-964. https://doi.org/10.1007/s00586-008-0651-8
  82. Wang, P. N., Chen, S. S., Liu, H. C., Fuh, J. L., Kuo, B. I. and Wang, S. J. (1999) Ossification of the posterior longitudinal ligament of the spine. A case-control risk factor study. Spine 24, 142-144. https://doi.org/10.1097/00007632-199901150-00010
  83. Wei, W., He, H. L., Chen, C. Y., Zhao, Y., Jiang, H. L., Liu, W. T., Du, Z. F., Chen, X. L., Shi, S. Y. and Zhang, X. N. (2014) Whole exome sequencing implicates PTCH1 and COL17A1 genes in ossification of the posterior longitudinal ligament of the cervical spine in Chinese patients. Genet. Mol. Res. 13, 1794-1804. https://doi.org/10.4238/2014.March.17.7
  84. Yan, L., Chang, Z., Liu, Y., Li, Y. B., He, B. R. and Hao, D. J. (2013) A single nucleotide polymorphism in the human bone morphogenetic protein-2 gene (109T > G) affects the Smad signaling pathway and the predisposition to ossification of the posterior longitudinal ligament of the spine. Chin. Med. J. 126, 1112-1118. https://doi.org/10.3760/cma.j.issn.0366-6999.20123323
  85. Yang, H. S., Lu, X. H., Chen, D. Y., Yuan, W., Yang, L. L., Chen, Y. and He, H. L. (2011) Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Eur. Spine J. 20, 1459-1465. https://doi.org/10.1007/s00586-011-1767-9
  86. Yonemori, K., Imamura, T., Ishidou, Y., Okano, T., Matsunaga, S., Yoshida, H., Kato, M., Sampath, T. K., Miyazono, K., ten Dijke, P. and Sakou, T. (1997) Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament. Am. J. Pathol. 150, 1335-1347.
  87. Yoshimura, N., Nagata, K., Muraki, S., Oka, H., Yoshida, M., Enyo, Y., Kagotani, R., Hashizume, H., Yamada, H., Ishimoto, Y., Teraguchi, M., Tanaka, S., Kawaguchi, H., Toyama, Y., Nakamura, K. and Akune, T. (2014) Prevalence and progression of radiographic ossification of the posterior longitudinal ligament and associated factors in the Japanese population: a 3-year follow-up of the ROAD study. Osteoporos. Int. 25, 1089-1098. https://doi.org/10.1007/s00198-013-2489-0
  88. Zeidman, S. M., Ducker, T. B. and Raycroft, J. (1997) Trends and complications in cervical spine surgery: 1989-1993. J. Spinal Disord. 10, 523-526.
  89. Zhang, W., Wei, P., Chen, Y., Yang, L., Jiang, C., Jiang, P. and Chen, D. (2014) Down-regulated expression of vimentin induced by mechanical stress in fibroblasts derived from patients with ossification of the posterior longitudinal ligament. Eur. Spine J. 23, 2410-2415. https://doi.org/10.1007/s00586-014-3394-8
  90. Zhang, Y, Liu, B., Shao, J., Song, J. and Zhang, J. (2015) Proteomic profiling of posterior longitudinal ligament of cervical spine. Int. J. Clin. Exp. Med. 8, 5631-5639.

Cited by

  1. Methylation-mediated down-regulation of microRNA-497-195 cluster confers osteogenic differentiation in ossification of the posterior longitudinal ligament of the spine via ADORA2A vol.477, pp.12, 2020, https://doi.org/10.1042/bcj20200157
  2. The roles of autophagy in osteogenic differentiation in rat ligamentum fibroblasts: Evidence and possible implications vol.34, pp.7, 2019, https://doi.org/10.1096/fj.201903216rr
  3. Autophagy in spinal ligament fibroblasts: evidence and possible implications for ossification of the posterior longitudinal ligament vol.15, 2020, https://doi.org/10.1186/s13018-020-02017-6
  4. Enhanced Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells in Ossification of the Posterior Longitudinal Ligament Through Activation of the BMP2-Smad1/5/8 Pathway vol.29, pp.24, 2020, https://doi.org/10.1089/scd.2020.0117
  5. Bibliometric and Visualized Analysis of Scientific Publications on Ossification of the Posterior Longitudinal Ligament Based on Web of Science vol.149, 2019, https://doi.org/10.1016/j.wneu.2021.02.045
  6. Automated detection of cervical ossification of the posterior longitudinal ligament in plain lateral radiographs of the cervical spine using a convolutional neural network vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-92160-9
  7. An open-label randomized multi-Centre study to evaluate anterior controllable Antedisplacement and fusion versus posterior Laminoplasty in patients with cervical ossification of the posterior longitud vol.22, pp.1, 2019, https://doi.org/10.1186/s12891-021-04645-3