Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.043

Molecular Pathophysiology of Ossification of the Posterior Longitudinal Ligament (OPLL)  

Nam, Dae Cheol (Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital)
Lee, Hyun Jae (Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University)
Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University)
Hwang, Sun-Chul (Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital)
Publication Information
Biomolecules & Therapeutics / v.27, no.4, 2019 , pp. 342-348 More about this Journal
Abstract
Ossification of the posterior longitudinal ligament (OPLL) can be defined as an ectopic ossification in the tissues of spinal ligament showing a hyperostotic condition. OPLL is developed mostly in the cervical spine and clinical presentations of OPLL are majorly myelopathy and/or radiculopathy, with serious neurological pathology resulting in paralysis of extremities and disturbances of motility lowering the quality of life. OPLL is known to be an idiopathic and multifactorial disease, which genetic factors and non-genetic factors including diet, obesity, physical strain on the posterior longitudinal ligament, age, and diabetes mellitus, are involved into the pathogenesis. Up to now, surgical management by decompressing the spinal cord is regarded as standard treatment for OPLL, although there might be the risk of development of reprogression of ossification. The molecular pathogenesis and efficient therapeutic strategy, especially pharmacotherapy and/or preventive intervention, of OPLL has not been clearly elucidated and suggested. Therefore, in this review, we tried to give an overview to the present research results on OPLL, in order to shed light on the potential pharmacotherapy based on molecular pathophysiologic aspect of OPLL, especially on the genetic/genomic factors involved into the etiology of OPLL.
Keywords
OPLL; Pathophysiology; Novel therapeutic approach;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, Y, Liu, B., Shao, J., Song, J. and Zhang, J. (2015) Proteomic profiling of posterior longitudinal ligament of cervical spine. Int. J. Clin. Exp. Med. 8, 5631-5639.
2 Abiola, R., Rubery, P. and Mesfin, A. (2016) Ossification of the posterior longitudinal ligament: etiology, diagnosis, and outcomes of nonoperative and operative management. Global Spine J. 6, 195-204.   DOI
3 Akune, T., Ogata, N., Seichi, A., Ohnishi, I., Nakamura, K. and Kawaguchi, H. (2001) Insulin secretory response is positively associated with the extent of ossification of the posterior longitudinal ligament of the spine. J. Bone Joint Surg. Am. 83-A, 1537-1544.
4 Asari, T., Furukawa, K., Tanaka, S., Kudo, H., Mizukami, H., Ono, A., Numasawa, T., Kumagai, G., Motomura, S., Yagihashi, S. and Toh, S. (2012) Mesenchymal stem cell isolation and characterization from human spinal ligaments. Biochem. Biophys. Res. Commun. 417, 1193-1199.   DOI
5 Beom, J. Y. and Seo, H. Y. (2018) the need for early tracheostomy in patients with traumatic cervical cord injury. Clin. Orthop. Surg. 10, 191-196.   DOI
6 Bonewald, L. F. and Dallas, S. L. (1994) Role of active and latent transforming growth factor beta in bone formation. J. Cell. Biochem. 55, 350-357.   DOI
7 Bonewald, L. F. and Mundy, G. R. (1990) Role of transforming growth factor-beta in bone remodeling. Clin. Orthop. Relat. Res. 250, 261-276.
8 Chen, D., Liu, Y., Yang, H., Chen, D., Zhang, X., Fermandes, J. C. and Chen, Y. (2016) Connexin 43 promotes ossification of the posterior longitudinal ligament through activation of the ERK1/2 and p38 MAPK pathways. Cell Tissue Res. 363, 765-773.   DOI
9 Chen, G., Deng, C. and Li, Y.P. (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272-288.   DOI
10 Chen, Y., Wang, X., Yang, H., Miao, J., Liu, X. and Chen, D. (2014) Upregulated expression of PERK in spinal ligament fibroblasts from the patients with ossification of the posterior longitudinal ligament. Eur. Spine J. 23, 447-454.   DOI
11 Chikuda, H., Seichi, A. and Takeshita, K. (2011) Acute cervical spinal cord injury complicated by preexisting ossification of the posterior longitudinal ligament: a multicenter study. Spine 36, 1453-1458.   DOI
12 Han, I. B., Ropper, A. E., Jeon, Y. J., Park, H. S., Shin, D. A., Teng, Y. D., Kuh, S. U. and Kim, N. K. (2013) Association of transforming growth factor-beta 1 gene polymorphism with genetic susceptibil-ity to ossification of the posterior longitudinal ligament in Korean patients. Genet. Mol. Res. 12, 4807-4816.   DOI
13 Fujimori, T., Le, H., Hu, S.S., Chin, C., Pekmezci, M., Schairer, W., Tay, B. K., Hamasaki, T., Yoshikawa, H. and Iwasaki, M. (2015) Ossification of the posterior longitudinal ligament of the cervical spine in 3161 patients: a CT-based study. Spine 40, E394-E403.   DOI
14 Furukawa, K. (2006) Current topics in pharmacological research on bone metabolism: molecular basis of ectopic bone formation induced by mechanical stress. J. Pharmacol. Sci. 100, 201-204.   DOI
15 Furukawa, K. (2008) Pharmacological aspect of ectopic ossification in spinal ligament tissues. Pharmacol. Ther. 118, 352-358.   DOI
16 He, Z., Zhu, H., Ding, L., Xiao, H., Chen, D. and Xue, F. (2013) Association of NPP1 polymorphism with postoperative progression of ossification of the posterior longitudinal ligament in Chinese patients. Genet. Mol. Res. 12, 4648-4655.   DOI
17 Horikoshi, T., Maeda, K., Kawaguchi, Y., Chiba, K., Mori, K., Koshizuka, Y., Hirabayashi, S., Sugimori, K., Matsumoto, M., Kawaguchi, H., Takahashi, M., Inoue, H., Kimura, T., Matsusue, Y., Inoue, I., Baba, H., Nakamura, K. and Ikegawa, S. (2006) A large-scale genetic association study of ossification of the posterior longitudinal ligament of the spine. Hum Genet. 119, 611-616.   DOI
18 Hosoda, Y., Yoshimura, Y. and Higaki, S. (1981) A new breed of mouse showing multiple osteochondral lesions - twy mouse. Ryumachi 21 Suppl, 157-164.
19 Ikegawa, S. (2014) Genomic study of ossification of the posterior longitudinal ligament of the spine. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 90, 405-412.   DOI
20 Ikeda, Y., Nakajima, A., Aiba, A., Koda, M., Okawa, A., Takahashi, K. and Yamazaki, M. (2011) Association between serum leptin and bone metabolic markers, and the development of heterotopic ossification of the spinal ligament in female patients with ossification of the posterior longitudinal ligament. Eur. Spine J. 20, 1450-1458.   DOI
21 Iwasaki, K., Furukawa, K. I., Tanno, M., Kusumi, T., Ueyama, K., Tanaka, M., Kudo, H., Toh, S., Harata, S. and Motomura, S. (2004) Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcif. Tissue Int. 74, 448-457.   DOI
22 Iwasawa, T., Iwasaki, K., Sawada, T., Okada, A., Ueyama, K., Motomura, S., Harata, S., Inoue, I., Toh, S. and Furukawa, K. I. (2006) Pathophysiological role of endothelin in ectopic ossification of human spinal ligaments induced by mechanical stress. Calcif. Tissue Int. 79, 422-430.   DOI
23 Jekarl, D. W., Paek, C. M., An, Y. J., Kim, Y. J., Kim, M., Kim, Y., Lee, J. and Sung, C. H. (2013) TGFBR2 gene polymorphism is associated with ossification of the posterior longitudinal ligament. J. Clin. Neurosci. 20, 453-456.   DOI
24 Kamiya, M., Harada, A., Mizuno, M., Iwata, H. and Yamada, Y. (2001) Association between a polymorphism of the transforming growth factor-beta1 gene and genetic susceptibility to ossification of the posterior longitudinal ligament in Japanese patients. Spine 26, 1264-1266.   DOI
25 Kawaguchi, Y., Nakano, M., Yasuda, T., Seki, S., Hori, T. and Kimura, T. (2013) Ossification of the posterior longitudinal ligament in not only the cervical spine, but also other spinal regions: analysis using multidetector computed tomography of the whole spine. Spine 38, E1477-E1482.   DOI
26 Karasugi, T., Nakajima, M., Ikari, K.; Genetic Study Group of Investigation Committee on Ossification of the Spinal Ligaments, Tsuji, T., Matsumoto, M., Chiba, K., Uchida, K., Kawaguchi, Y., Mizuta, H., Ogata, N., Iwasaki, M., Maeda, S., Numasawa, T., Abumi, K., Kato, T., Ozawa, H., Taguchi, T., Kaito, T., Neo, M., Yamazaki, M., Tadokoro, N., Yoshida, M., Nakahara, S., Endo, K., Imagama, S., Demura, S., Sato, K., Seichi, A., Ichimura, S., Watanabe, M., Watanabe, K., Nakamura, Y., Mori, K., Baba, H., Toyama, Y. and Ikegawa, S. (2013) A genome-wide sib-pair linkage analysis of ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Metab. 31, 136-143.   DOI
27 Kashii, M., Matuso, Y., Sugiura, T., Fujimori, T., Nagamoto, Y., Makino, T., Kaito, T., Ebina, K., Iwasaki, M. and Yoshikawa, H. (2016) Circulating sclerostin and dickkopf-1 levels in ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Metab. 34, 315-324.   DOI
28 Kawaguchi, Y., Furushima, K., Sugimori, K., Inoue, I. and Kimura, T. (2003) Association between polymorphism of the transforming growth factor-beta1 gene with the radiologic characteristic and ossification of the posterior longitudinal ligament. Spine 28, 1424-1426.   DOI
29 Kawaguchi, Y., Nakano, M., Yasuda, T., Seki, S., Hori, T., Suzuki, K., Makino, H. and Kimura, T. (2016) Characteristics of ossification of the spinal ligament; incidence of ossification of the ligamentum flavum in patients with cervical ossification of the posterior longitudinal ligament - analysis of the whole spine using multidetector CT. J. Orthop. Sci. 21, 439-445.   DOI
30 Kim, B. S., Moon, M. S., Yoon, M. G., Kim, S. T., Kim, S. J., Kim, M. S. and Kim, D. S. (2018) Prevalence of diffuse idiopathic skeletal hyperostosis diagnosed by whole spine computed tomography: a preliminary study. Clin. Orthop. Surg. 10, 41-46.   DOI
31 Kim, K. H., Kuh, S. U., Park, J. Y., Lee, S. J., Park, H. S., Chin, D. K., Kim, K. S. and Cho, Y. E. (2014) Association between BMP-2 and COL6A1 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the cervical spine in Korean patients and family members. Genet. Mol. Res. 13, 2240-2247.   DOI
32 Kim, Y. H., Ha, K. Y. and Kim, S. I. (2017) Spinal cord injury and related clinical trials. Clin. Orthop. Surg. 9, 1-9.   DOI
33 Kobashi, G., Washio, M., Okamoto, K., Sasaki, S., Yokoyama, T., Miyake, Y., Sakamoto, N., Ohta, K., Inaba, Y. and Tanaka, H.; Japan Collaborative Epidemiological Study Group for Evaluation of Ossification of the Posterior Longitudinal Ligament of the Spine Risk. (2004) High body mass index after age 20 and diabetes mellitus are independent risk factors for ossification of the posterior longitudinal ligament of the spine in Japanese subjects: a case-control study in multiple hospitals. Spine 29, 1006-1010.   DOI
34 Koga, H., Sakou, T., Taketomi, E., Hayashi, K., Numasawa, T., Harata, S., Yone, K., Matsunaga, S., Otterud, B., Inoue, I. and Leppert, M. (1998) Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 62, 1460-1467.   DOI
35 Kong, Q., Ma, X., Li, F., Guo, Z., Qi, Q., Li, W., Yuan, H., Wang, Z. and Chen, Z. (2007) COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament. Spine 32, 2834-2838.   DOI
36 Koyanagi, I., Iwasaki, Y., Hida, K., Imamura, H., Fujimoto, S. and Akino, M. (2003) Acute cervical cord injury associated with ossification of the posterior longitudinal ligament. Neurosurgery 53, 887-892.   DOI
37 Ohishi, H., Furukawa, K., Iwasaki, K., Ueyama, K., Okada, A., Motomura, S., Harata, S. and Toh, S. (2003) Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J. Pharmacol. Exp. Ther. 305, 818-824.   DOI
38 Okamoto, K., Kobashi, G., Washio, M., Sasaki, S., Yokoyama, T., Miyake, Y., Sakamoto, N., Ohta, K., Inaba, Y. and Tanaka, H.; Japan Collaborative Epidemiological Study Group for Evaluation of Ossification of the Posterior Longitudinal Ligament of the Spine (OPLL) Risk. (2004) Dietary habits and risk of ossification of the posterior longitudinal ligaments of the spine (OPLL); findings from a casecontrol study in Japan. J. Bone Miner. Metab. 22, 612-617.   DOI
39 Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y. and Ikegawa, S. (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 19, 271-273.   DOI
40 Koshizuka, Y., Kawaguchi, H., Ogata, N., Ikeda, T., Mabuchi, A., Seichi, A., Nakamura, Y., Nakamura, K. and Ikegawa, S. (2002) Nucleotide pyrophosphatase gene polymorphism associated with ossification of the posterior longitudinal ligament of the spine. J. Bone. Miner. Res. 17, 138-144.   DOI
41 Lee, D. Y., Park, Y. J., Song, S. Y., Hwang, S. C., Kim, K. T. and Kim, D. H. (2018) The importance of early surgical decompression for acute traumatic spinal cord injury. Clin. Orthop. Surg. 10, 448-454.   DOI
42 Li, J. M., Zhang, Y., Ren, Y., Liu, B. G., Lin, X., Yang, J., Zhao, H. C., Wang, Y. J. and Song, L. (2014) Uniaxial cyclic stretch promotes osteogenic differentiation and synthesis of BMP2 in the C3H10T1/2 cells with BMP2 gene variant of rs2273073 (T/G). PLoS ONE 9, e106598.   DOI
43 Liang, C., Wang, P., Liu, X., Yang, C., Ma, Y., Yong, L., Zhu, B., Liu, X. and Liu, Z. (2018) Whole-genome sequencing reveals novel genes in ossification of the posterior longitudinal ligament of the thoracic spine in the Chinese population. J. Orthop. Surg. Res. 13, 324.   DOI
44 Liu, X., Kumagai, G., Wada, K., Tanaka, T., Fujita, T., Sasaki, A., Furukawa, K. I. and Ishibashi, Y. (2017) Suppression of osteogenic differentiation in mesenchymal stem cells from patients with ossification of the posterior longitudinal ligament by a histamine-2-receptor antagonist. Eur. J. Pharmacol. 810, 156-162.   DOI
45 Nomura, A., Seya, K., Yu, Z., Daitoku, K., Motomura, S., Murakami, M., Fukuda, I. and Furukawa, K. (2013) CD34-negative mesenchymal stem-like cells may act as the cellular origin of human aortic valve calcification. Biochem. Biophys. Res. Commun. 440, 780-785.   DOI
46 Pham, M. H., Attenello, F. J., Lucas, J., He, S., Stapleton, C. J. and Hsieh, P. C. (2011) Conservative management of ossification of the posterior longitudinal ligament. A review. Neurosurg. Focus 30, E2.
47 Rahman, M. S., Akhtar, N., Jamil, H. M., Banik, R. S. and Asaduzzaman, S. M. (2015) TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 3, 15005.   DOI
48 Ren, Y., Liu, Z. Z., Feng, J., Wan, H., Li, J. H., Wang, H. and Lin, X. (2012) Association of a BMP9 haplotype with ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. PLoS ONE 7, e40587.   DOI
49 Saetia, K., Cho, D., Lee, S., Kim, D. H. and Kim, S. D. (2011) Ossification of the posterior longitudinal ligament: a review. Neurosurg. Focus 30, E1.
50 Sakou, T., Matsunaga, S. and Koga, H. (2000) Recent progress in the study of pathogenesis of ossification of the posterior longitudinal ligament. J. Orthop. Sci. 5, 310-315.   DOI
51 Sanchez-Duffhues, G., Hiepen, C., Knaus, P. and Ten Dijke, P. (2015) Bone morphogenetic protein signaling in bone homeostasis. Bone 80, 43-59.   DOI
52 Sawada, T., Kishiya, M., Kanemaru, K., Seya, K., Yokoyama, T., Ueyama, K., Motomura, S., Toh, S. and Furukawa, K. (2008) Possible role of extracellular nucleotides in ectopic ossification of human spinal ligaments. J. Pharmacol. Sci. 106, 152-161.   DOI
53 Matsunaga, S., Sakou, T., Taketomi, E. and Komiya, S. (2004) Clinical course of patients with ossification of the posterior longitudinal ligament: a minimum 10-year cohort study. J. Neurosurg. 100, 245-248.   DOI
54 Maeda, S., Ishidou, Y., Koga, H, Taketomi, E., Ikari, K., Komiya, S., Takeda, J., Sakou, T. and Inoue, I. (2001) Functional impact of human collagen alpha2 (XI) gene polymorphism in pathogenesis of ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Res. 16, 948-957.   DOI
55 Marcellini, S., Henriquez, J. P. and Bertin, A. (2012) Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. BioEssays 34, 953-962.   DOI
56 Matsui, H., Yudoh, K. and Tsuji, H. (1996) Significance of serum levels of type I procollagen peptide and intact osteocalcin and bone mineral density in patients with ossification of the posterior longitudinal ligaments. Calcif. Tissue Int. 59, 397-400.   DOI
57 Matsunaga, S. and Sakou, T. (2012) Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine 37, E309-E314.   DOI
58 Matsunaga, S., Yamaguchi, M., Hayashi, K. and Sakou, T. (1999) Genetic analysis of ossification of the posterior longitudinal ligament. Spine 24, 937-939.   DOI
59 Medici, D. and Olsen, B. R. (2012) The role of endothelial-mesenchymal transition in heterotopic ossification. J. Bone Miner. Res. 27, 1619-1622.   DOI
60 Mori, K., Imai, S., Kasahara, T., Nishizawa, K., Mimura, T. and Matsusue, Y. (2014) Prevalence, distribution, and morphology of thoracic ossification of the posterior longitudinal ligament in japanese: results of CT-based cross-sectional study. Spine 39, 394-399.   DOI
61 Shin, J. H., Steinmetz, M. P., Benzel, E. C. and Krishnaney, A. A. (2011) Dorsal versus ventral surgery for cervical ossification of the posterior longitudinal ligament: considerations for approach selection and review of surgical outcomes. Neurosurg. Focus 30, E8.
62 Shapiro, F., Cahill, C., Malatantis, G. and Nayak, R. C. (1995) Transmission electron microscopic demonstration of vimentin in rat osteoblast and osteocyte cell bodies and processes using the immunogold technique. Anat. Rec. 241, 39-48.   DOI
63 Shi, S., de Gorter, D. J., Hoogaars W. M., Hoen, P. A. and Ten Dijke, P. (2013) Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cell Mol. Life Sc. 70, 407-423.   DOI
64 Shin, H. K., Jeong, H. J., Kim, E., Park, J. H, Park, S. J. and Cho, Y. (2017) Should we check the routine postoperative MRI for hematoma in spinal decompression surgery? Clin. Orthop. Surg. 9, 184-189.   DOI
65 Stapleton, C. J., Pham, M. H., Attenello, F. J. and Hsieh, P. C. (2011) Ossification of the posterior longitudinal ligament: genetics and pathophysiology. Neurosurg. Focus 30, E6.
66 Sugimori, K., Kawaguchi, Y., Ohmori, K., Kanamori M., Ishihara, H. and Kimura, T. (2003) Significance of bone formation markers in patients with ossification of the posterior longitudinal ligament of the spine. Spine 28, 378-379.   DOI
67 Sugita, D., Yayama, T., Uchida, K., Kokubo, Y., Nakajima, H., Yamagishi, A., Takeura, N. and Baba, H. (2013) Indian hedgehog signaling promotes chondrocyte differentiation in enchondral ossification in human cervical ossification of the posterior longitudinal ligament. Spine 38, E1388-E1396.   DOI
68 Sun, Y. and Mauerhan, D. R. (2012) Meniscal calcification, pathogenesis and implications. Curr. Opin. Rheumatol. 24, 152-157.   DOI
69 Nakajima, M., Takahashi, A., Tsuji, T., Karasugi, T., Baba, H., Uchida, K., Kawabata, S., Okawa, A., Shindo, S., Takeuchi, K., Taniguchi, Y., Maeda, S., Kashii, M., Seichi, A., Nakajima, H., Kawaguchi, Y., Fujibayashi, S., Takahata, M., Tanaka, T., Watanabe, K., Kida, K., Kanchiku, T., Ito, Z., Mori, K., Kaito, T., Kobayashi, S., Yamada, K., Takahashi, M., Chiba, K., Matsumoto, M., Furukawa, K., Kubo, M., Toyama, Y.; Genetic Study Group of Investigation Committee on Ossification of the Spinal Ligaments and Ikegawa, S. (2014) A genome-wide association study identifies susceptibility loci for ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 46, 1012-1016.   DOI
70 Morvan, F., Boulukos, K., Clement-Lacroix, P., Roman, R. S, Suc-Royer, I., Vayssiere, B., Ammann, P., Martin, P., Pinho, S., Pognonec, P., Mollat, P., Niehrs, C., Baron, R. and Rawadi, G. (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934-945.   DOI
71 Nelson, E. R., Wong, V. W., Krebsbach, P. H., Wang, S. C. and Levi, B. (2012) Heterotopic ossification following burn injury: the role of stem cells. J. Burn. Care. Res. 33, 463-470.   DOI
72 Nishimura, R., Hata, K., Matsubara, T., Wakabayashi, M. and Yoneda, T. (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J. Biochem. 151, 247-254.   DOI
73 Modder, U. I., Clowes, J. A., Hoey, K., Peterson, J. M., McCready, L., Oursler, M. J., Riggs, B. L. and Khosla, S. (2011) Regulation of circulating sclerostin levels by sex steroids in women and in men. J. Bone Miner. Res. 26, 27-34.   DOI
74 Terayama, K. (1989) Genetic studies on ossification of the posterior longitudinal ligament of the spine. Spine 14, 1184-1191.   DOI
75 Szulc, P., Boutroy, S., Vilayphiou, N., Schoppet, M., Rauner, M., Chapurlat, R., Hamann, C. and Hofbauer, L. C. (2013) Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J. Bone Miner. Res. 28, 1760-1770.   DOI
76 Tahara, M., Aiba, A., Yamazaki, M., Ikeda, Y, Goto, S., Moriya, H. and Okawa, A. (2005) The extent of ossification of posterior longitudinal ligament of the spine associated with nucleotide pyrophosphatase gene and leptin receptor gene polymorphisms. Spine 30, 877-881.   DOI
77 Tanaka, T., Ikari, K., Furushima, K., Okada, A., Tanaka, H., Furukawa, K., Yoshida, K., Ikeda, T., Ikegawa, S., Hunt, S. C., Takeda, J., Toh, S., Harata, S., Nakajima, T. and Inoue, I. (2003) Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 73, 812-822.   DOI
78 Uchida, K., Yayama, T., Sugita, D., Nakajima, H., Rodriguez Guerrero, A., Watanabe, S., Roberts, S., Johnson, W. E. and Baba, H. (2012) Initiation and progression of ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur. Spine J. 21, 149-155.
79 Tsukahara, S., Miyazawa, N., Akagawa, H., Forejtova, S., Pavelka, K., Tanaka, T., Toh, S., Tajima, A., Akiyama, I. and Inoue, I. (2005) COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine 30, 2321-2324.   DOI
80 Tu, T. H., Wu, J. C., Huang, W. C., Chang, H. K., Ko, C. C., Fay, L. Y., Wu, C. L. and Cheng, H. (2015) Postoperative nonsteroidal antiinflammatory drugs and the prevention of heterotopic ossification after cervical arthroplasty: analysis using CT and a minimum 2-year follow-up. J. Neurosurg. Spine 22, 447-453.   DOI
81 Wang, H., Jin, W. and Li, H. (2018) Genetic polymorphisms in bone morphogenetic protein receptor type IA gene predisposes individuals to ossification of the posterior longitudinal ligament of the cervical spine via the smad signaling pathway. BMC Musculoskelet. Disord. 19, 61.   DOI
82 Wang, H., Liu, D., Yang, Z., Tian, B., Li, J., Meng, X., Wang, Z., Yang, H. and Lin, X. (2008) Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur. Spine J. 17, 956-964.   DOI
83 Wang, P. N., Chen, S. S., Liu, H. C., Fuh, J. L., Kuo, B. I. and Wang, S. J. (1999) Ossification of the posterior longitudinal ligament of the spine. A case-control risk factor study. Spine 24, 142-144.   DOI
84 Zeidman, S. M., Ducker, T. B. and Raycroft, J. (1997) Trends and complications in cervical spine surgery: 1989-1993. J. Spinal Disord. 10, 523-526.
85 Wei, W., He, H. L., Chen, C. Y., Zhao, Y., Jiang, H. L., Liu, W. T., Du, Z. F., Chen, X. L., Shi, S. Y. and Zhang, X. N. (2014) Whole exome sequencing implicates PTCH1 and COL17A1 genes in ossification of the posterior longitudinal ligament of the cervical spine in Chinese patients. Genet. Mol. Res. 13, 1794-1804.   DOI
86 Yan, L., Chang, Z., Liu, Y., Li, Y. B., He, B. R. and Hao, D. J. (2013) A single nucleotide polymorphism in the human bone morphogenetic protein-2 gene (109T > G) affects the Smad signaling pathway and the predisposition to ossification of the posterior longitudinal ligament of the spine. Chin. Med. J. 126, 1112-1118.   DOI
87 Yang, H. S., Lu, X. H., Chen, D. Y., Yuan, W., Yang, L. L., Chen, Y. and He, H. L. (2011) Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Eur. Spine J. 20, 1459-1465.   DOI
88 Yonemori, K., Imamura, T., Ishidou, Y., Okano, T., Matsunaga, S., Yoshida, H., Kato, M., Sampath, T. K., Miyazono, K., ten Dijke, P. and Sakou, T. (1997) Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament. Am. J. Pathol. 150, 1335-1347.
89 Yoshimura, N., Nagata, K., Muraki, S., Oka, H., Yoshida, M., Enyo, Y., Kagotani, R., Hashizume, H., Yamada, H., Ishimoto, Y., Teraguchi, M., Tanaka, S., Kawaguchi, H., Toyama, Y., Nakamura, K. and Akune, T. (2014) Prevalence and progression of radiographic ossification of the posterior longitudinal ligament and associated factors in the Japanese population: a 3-year follow-up of the ROAD study. Osteoporos. Int. 25, 1089-1098.   DOI
90 Zhang, W., Wei, P., Chen, Y., Yang, L., Jiang, C., Jiang, P. and Chen, D. (2014) Down-regulated expression of vimentin induced by mechanical stress in fibroblasts derived from patients with ossification of the posterior longitudinal ligament. Eur. Spine J. 23, 2410-2415.   DOI