Fig. 1. SWASV of the (a) flat Au, (b) nanoplate Au, (c) dendritic Au, and (d) nanospike Au electrodes in 3 μM As(III) + 1 M HCl. The nanostructured Au electrodes were prepared using different deposition charges (Qd).
Fig. 3. Voltammetric profiles of Pb UPD obtained on (a) flat Au, (b) nanoplate Au, (c) dendritic Au, and (d) nanospike Au in 0.1 M NaOH + 10-3 M Pb(NO3)2. Scan Rate: 50 mV/s.
Fig. 4. SWASV responses and calibration plots for As detection with (a, b) the flat Au, (c, d) the nanoplate Au (0.019 C), (e, f) the dendritic Au (0.025 C), and (g, h) the nanospike Au (0.02 C) electrodes.
Fig. 5. SWASV of the effect of pre-deposition time on stripping peak current in 3 μM As(III) in 1 M HCl solution (a) at flat Au and (b) at a nanoplate Au (0.019 C) electrodes. Plot (c) is the stripping peak current vs. predeposition time that shows a comparison of the responses in nanoplate Au and flat Au electrodes.
Fig. 6. Calibration plots of As detection obtained from flat Au and nanoplate Au electrodes with pre-deposition times of (a) 50 s, (b) 150 s, and (c) 400 s.
Fig. 7. SWASV responses of the nanoplate Au electrode in the (a) absence and (b) presence of 3 μM Cu(II) in 1 M HCl solution. Pre-deposition time = 150 s.
Fig. 2. Plot of normalized current vs. deposition charge of nanostructured Au electrodes in 3 μM As(III) in 1 M HCl. Dashed line corresponds to the flat Au electrode.
References
- L. Xiao, G. G. W., R. G. Compton, Anal. Chim. Acta, 2008, 620(1-2), 44-49. https://doi.org/10.1016/j.aca.2008.05.015
- E. M. Douglas, A. H., Anal. Chim. Acta, 2009, 646(1-2), 6-16. https://doi.org/10.1016/j.aca.2009.05.006
- X. Dai, R. G. C., Electroanalysis, 2005 17(14), 1325-1330. https://doi.org/10.1002/elan.200403246
- E. Majid, S. H., Y. Liu, K. B. Male, J. H. T. Luong, Anal. Chem., 2006, 78(3), 762-769. https://doi.org/10.1021/ac0513562
- A. Cavicchioli, M. A. L.-S., I. G. R. Gutz, Electroanalysis, 2004, 16(9), 697-711. https://doi.org/10.1002/elan.200302936
- D. Q. Hung, O. N., R. G. Compton, Talanta, 2004, 64(2), 269-277. https://doi.org/10.1016/j.talanta.2004.01.027
- M. J. Abedin, J. F., A. A. Meharg, Plant Physiol, 2002, 128(3), 1120-1128. https://doi.org/10.1104/pp.010733
- A. Mukherjee, M. K. S., M. A. Hossain, S. Ahamed, B. Das, B. Nayak, D. Lodh, M. M. Rahman, D. Chakraborti, J. Health Popul. Nutr., 2006, 24(2), 142-163.
- B. K. Jena, C. R. R., Anal. Chem., 2008, 80(13), 4836-4844. https://doi.org/10.1021/ac071064w
- R. Feeney, P. K., Anal. Chem., 2000, 72(10), 2222-2228. https://doi.org/10.1021/ac991185z
- G. Hignett, J. D. W., N. S. Lawrence, D. Q. Hung, C. Prado, F. Marken, R. G. Compton, Electroanalysis 2004, 16(11), 897-903. https://doi.org/10.1002/elan.200302903
- Z. Jia, A. O. S., X. Dai, R. G. Compton, J. Electroanal. Chem., 2006, 587(2), 247-253. https://doi.org/10.1016/j.jelechem.2005.11.017
- Y-C. Sun, J. M., Mo-H. Yang, Talanta, 1997, 44(8), 1379-1387. https://doi.org/10.1016/S0039-9140(96)02197-2
- Y. Song, G. M. S., Anal. Chem., 2007, 79(6), 2412-2420. https://doi.org/10.1021/ac061543f
- S. Kempahanumakkagari, A. D., Ki-H. Kim, S. K. Kailasa, H-O. Yoon, Biosens. Bioelectron. 2017, 95, 106-116. https://doi.org/10.1016/j.bios.2017.04.013
- G. Forsberg, J. W. O. L., R. G. Megargle, Anal. Chem., 1975, 47(9), 1586-1592. https://doi.org/10.1021/ac60359a057
- C. Hua, D. J., L. Renman, Anal. Chim. Acta 1987, 201, 263-268. https://doi.org/10.1016/S0003-2670(00)85343-X
- M. Kopanica, L. N., Anal. Chim. Acta 1998, 368(3), 211-218. https://doi.org/10.1016/S0003-2670(98)00220-7
- X. Dai, O. N., M. E. Hyde, R. G. Compton, Anal. Chem., 2004, 76(19), 5924-5929. https://doi.org/10.1021/ac049232x
- Md. M. Hossain, M. M. I., S. Ferdousi, T. Okajima, T. Ohsaka, Electroanalysis 2008, 20(22), 2435-2441. https://doi.org/10.1002/elan.200804339
- M. R. Rahman, T. O., T. Ohsaka, Anal. Chem., 2010, 82(22), 9169-9176. https://doi.org/10.1021/ac101206j
- B. Ren, L. A. J., M. Chen, D. K. Oppedisano, D. Qui, S. J. Ippolito, S. K. Bhargava, J. Electrochem. Soc., 2017, 164(14), H1121-H1128. https://doi.org/10.1149/2.1261714jes
- D-D. Han, S.-S. L., Z. Guo, X. Chen, J-H. Liub, X-J. Huang, RSC Adv. 2016, 6(36), 30337-30344. https://doi.org/10.1039/C5RA27778G
- B. Seo, S. C., J. Kim, ACS Appl. Mater. and Interfaces, 2011, 3(2), 441-446. https://doi.org/10.1021/am101018g
- M. Hyun, S. C., Y. W. Lee, S. H. Kwon, S. W. Han, J. Kim, Electroanalysis 2011, 23(9), 2030-2035. https://doi.org/10.1002/elan.201000759
- S. Choi, M. A., J. Kim, Anal. Chim. Acta 2013, 779, 1-7. https://doi.org/10.1016/j.aca.2013.03.058
- B. Plowman, S. J. I., V. Bansal, Y. M. Sabri, Anthony P. O'Mulane, S. K. Bhargava, Chem. Commun., 2009, 5039-5041.
- C. Rogers, W. S. P., G. Veber, T. E. Williams, R. R. Cloke, F. R. Fischer, J. Am. Chem. Soc., 2017, 139(11), 4052-4061. https://doi.org/10.1021/jacs.6b12217
- S. Hebie, K. B. K., K. Servat, T. W. Napporn, Gold Bull, 2013, 46, 311-318. https://doi.org/10.1007/s13404-013-0119-4
- Y. Liu, S. B., N. Dimitrov, J. Phys. Chem. C, 2009, 113(28), 12362-12372. https://doi.org/10.1021/jp901536f
- M. Lukaszewski, M. S., A. Czerwinski, Int. J. Electrochem. Sci., 2016, 11, 4442-4469. https://doi.org/10.20964/2016.06.71
- Y. Song, G. M. S., Anal. Chim. Acta, 2007, 593(1), 7-12. https://doi.org/10.1016/j.aca.2007.04.033