DOI QR코드

DOI QR Code

Effect of Nanostructures of Au Electrodes on the Electrochemical Detection of As

  • Received : 2018.11.22
  • Accepted : 2018.12.18
  • Published : 2019.06.30

Abstract

The development of simple methods for As detection has received great attention because As is a toxic chemical element causing environmental and health-related issues. In this work, the effect of nanostructures of Au electrodes on their electroanalytical performance during As detection was investigated. Different Au nanostructures with various surface morphologies such as nanoplate Au, nanospike Au, and dendritic Au structures were prepared, and their electrochemical behaviors toward square-wave anodic stripping voltammetric As detection were examined. The difference in intrinsic efficiency for As detection between nanostructured and flat Au electrodes was explained based on the crystallographic orientations of Au surfaces, as examined by the underpotential deposition of Pb. The most efficient As detection performance was obtained with nanoplate Au electrodes, and the effects of the pre-deposition time and interference on As detection of the nanoplate Au electrodes were also investigated.

Keywords

E1JTC5_2019_v10n2_206_f0001.png 이미지

Fig. 1. SWASV of the (a) flat Au, (b) nanoplate Au, (c) dendritic Au, and (d) nanospike Au electrodes in 3 μM As(III) + 1 M HCl. The nanostructured Au electrodes were prepared using different deposition charges (Qd).

E1JTC5_2019_v10n2_206_f0003.png 이미지

Fig. 3. Voltammetric profiles of Pb UPD obtained on (a) flat Au, (b) nanoplate Au, (c) dendritic Au, and (d) nanospike Au in 0.1 M NaOH + 10-3 M Pb(NO3)2. Scan Rate: 50 mV/s.

E1JTC5_2019_v10n2_206_f0004.png 이미지

Fig. 4. SWASV responses and calibration plots for As detection with (a, b) the flat Au, (c, d) the nanoplate Au (0.019 C), (e, f) the dendritic Au (0.025 C), and (g, h) the nanospike Au (0.02 C) electrodes.

E1JTC5_2019_v10n2_206_f0005.png 이미지

Fig. 5. SWASV of the effect of pre-deposition time on stripping peak current in 3 μM As(III) in 1 M HCl solution (a) at flat Au and (b) at a nanoplate Au (0.019 C) electrodes. Plot (c) is the stripping peak current vs. predeposition time that shows a comparison of the responses in nanoplate Au and flat Au electrodes.

E1JTC5_2019_v10n2_206_f0006.png 이미지

Fig. 6. Calibration plots of As detection obtained from flat Au and nanoplate Au electrodes with pre-deposition times of (a) 50 s, (b) 150 s, and (c) 400 s.

E1JTC5_2019_v10n2_206_f0007.png 이미지

Fig. 7. SWASV responses of the nanoplate Au electrode in the (a) absence and (b) presence of 3 μM Cu(II) in 1 M HCl solution. Pre-deposition time = 150 s.

E1JTC5_2019_v10n2_206_f0008.png 이미지

Fig. 2. Plot of normalized current vs. deposition charge of nanostructured Au electrodes in 3 μM As(III) in 1 M HCl. Dashed line corresponds to the flat Au electrode.

References

  1. L. Xiao, G. G. W., R. G. Compton, Anal. Chim. Acta, 2008, 620(1-2), 44-49. https://doi.org/10.1016/j.aca.2008.05.015
  2. E. M. Douglas, A. H., Anal. Chim. Acta, 2009, 646(1-2), 6-16. https://doi.org/10.1016/j.aca.2009.05.006
  3. X. Dai, R. G. C., Electroanalysis, 2005 17(14), 1325-1330. https://doi.org/10.1002/elan.200403246
  4. E. Majid, S. H., Y. Liu, K. B. Male, J. H. T. Luong, Anal. Chem., 2006, 78(3), 762-769. https://doi.org/10.1021/ac0513562
  5. A. Cavicchioli, M. A. L.-S., I. G. R. Gutz, Electroanalysis, 2004, 16(9), 697-711. https://doi.org/10.1002/elan.200302936
  6. D. Q. Hung, O. N., R. G. Compton, Talanta, 2004, 64(2), 269-277. https://doi.org/10.1016/j.talanta.2004.01.027
  7. M. J. Abedin, J. F., A. A. Meharg, Plant Physiol, 2002, 128(3), 1120-1128. https://doi.org/10.1104/pp.010733
  8. A. Mukherjee, M. K. S., M. A. Hossain, S. Ahamed, B. Das, B. Nayak, D. Lodh, M. M. Rahman, D. Chakraborti, J. Health Popul. Nutr., 2006, 24(2), 142-163.
  9. B. K. Jena, C. R. R., Anal. Chem., 2008, 80(13), 4836-4844. https://doi.org/10.1021/ac071064w
  10. R. Feeney, P. K., Anal. Chem., 2000, 72(10), 2222-2228. https://doi.org/10.1021/ac991185z
  11. G. Hignett, J. D. W., N. S. Lawrence, D. Q. Hung, C. Prado, F. Marken, R. G. Compton, Electroanalysis 2004, 16(11), 897-903. https://doi.org/10.1002/elan.200302903
  12. Z. Jia, A. O. S., X. Dai, R. G. Compton, J. Electroanal. Chem., 2006, 587(2), 247-253. https://doi.org/10.1016/j.jelechem.2005.11.017
  13. Y-C. Sun, J. M., Mo-H. Yang, Talanta, 1997, 44(8), 1379-1387. https://doi.org/10.1016/S0039-9140(96)02197-2
  14. Y. Song, G. M. S., Anal. Chem., 2007, 79(6), 2412-2420. https://doi.org/10.1021/ac061543f
  15. S. Kempahanumakkagari, A. D., Ki-H. Kim, S. K. Kailasa, H-O. Yoon, Biosens. Bioelectron. 2017, 95, 106-116. https://doi.org/10.1016/j.bios.2017.04.013
  16. G. Forsberg, J. W. O. L., R. G. Megargle, Anal. Chem., 1975, 47(9), 1586-1592. https://doi.org/10.1021/ac60359a057
  17. C. Hua, D. J., L. Renman, Anal. Chim. Acta 1987, 201, 263-268. https://doi.org/10.1016/S0003-2670(00)85343-X
  18. M. Kopanica, L. N., Anal. Chim. Acta 1998, 368(3), 211-218. https://doi.org/10.1016/S0003-2670(98)00220-7
  19. X. Dai, O. N., M. E. Hyde, R. G. Compton, Anal. Chem., 2004, 76(19), 5924-5929. https://doi.org/10.1021/ac049232x
  20. Md. M. Hossain, M. M. I., S. Ferdousi, T. Okajima, T. Ohsaka, Electroanalysis 2008, 20(22), 2435-2441. https://doi.org/10.1002/elan.200804339
  21. M. R. Rahman, T. O., T. Ohsaka, Anal. Chem., 2010, 82(22), 9169-9176. https://doi.org/10.1021/ac101206j
  22. B. Ren, L. A. J., M. Chen, D. K. Oppedisano, D. Qui, S. J. Ippolito, S. K. Bhargava, J. Electrochem. Soc., 2017, 164(14), H1121-H1128. https://doi.org/10.1149/2.1261714jes
  23. D-D. Han, S.-S. L., Z. Guo, X. Chen, J-H. Liub, X-J. Huang, RSC Adv. 2016, 6(36), 30337-30344. https://doi.org/10.1039/C5RA27778G
  24. B. Seo, S. C., J. Kim, ACS Appl. Mater. and Interfaces, 2011, 3(2), 441-446. https://doi.org/10.1021/am101018g
  25. M. Hyun, S. C., Y. W. Lee, S. H. Kwon, S. W. Han, J. Kim, Electroanalysis 2011, 23(9), 2030-2035. https://doi.org/10.1002/elan.201000759
  26. S. Choi, M. A., J. Kim, Anal. Chim. Acta 2013, 779, 1-7. https://doi.org/10.1016/j.aca.2013.03.058
  27. B. Plowman, S. J. I., V. Bansal, Y. M. Sabri, Anthony P. O'Mulane, S. K. Bhargava, Chem. Commun., 2009, 5039-5041.
  28. C. Rogers, W. S. P., G. Veber, T. E. Williams, R. R. Cloke, F. R. Fischer, J. Am. Chem. Soc., 2017, 139(11), 4052-4061. https://doi.org/10.1021/jacs.6b12217
  29. S. Hebie, K. B. K., K. Servat, T. W. Napporn, Gold Bull, 2013, 46, 311-318. https://doi.org/10.1007/s13404-013-0119-4
  30. Y. Liu, S. B., N. Dimitrov, J. Phys. Chem. C, 2009, 113(28), 12362-12372. https://doi.org/10.1021/jp901536f
  31. M. Lukaszewski, M. S., A. Czerwinski, Int. J. Electrochem. Sci., 2016, 11, 4442-4469. https://doi.org/10.20964/2016.06.71
  32. Y. Song, G. M. S., Anal. Chim. Acta, 2007, 593(1), 7-12. https://doi.org/10.1016/j.aca.2007.04.033