References
- Avgerinos, V., Potts, D.M. and Standing, J., 2016. The use of kinematic hardening models for predicting tunnelling-induced ground movements in London clay. Geotechnique, 66(2), 106-120. https://doi.org/10.1680/jgeot.15.P.035
- Basile, F., 2014. Effects of tunnelling on pile foundations. Soils and Foundations, 54(3), 280-295. https://doi.org/10.1016/j.sandf.2014.04.004
- Boussinesq, J., 1885. Application des potentiels a l'etude de l'equilibre et du movement des solides elastiques. Gauthier-Villars, Impromeur-Libraire.
- Bym, T., Marketos, G., Burland, J.B. and O'sullivan, C., 2013. Use of a two-dimensional discrete-element line-sink model to gain insight into tunnelling-induced deformations. Geotechnique, 63(9), p.791. https://doi.org/10.1680/geot.12.T.003
- Chen, L., Poulos, H.G. and Loganathan, N., 1999. Pile responses caused by tunneling. Journal of Geotechnical and Geoenvironmental Engineering, 125(3), 207-215. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(207)
- Franza, A., Marshall, A.M., Haji, T., Abdelatif, A.O., Carbonari, S. and Morici, M., 2017. A simplified elastic analysis of tunnel-piled structure interaction. Tunnelling and Underground Space Technology, 61, 104-121. https://doi.org/10.1016/j.tust.2016.09.008
- Franza, A. and Marshall, A.M., 2017. Centrifuge modeling study of the response of piled structures to tunneling. Journal of Geotechnical and Geoenvironmental Engineering, 144(2), 04017109.
- Jacobsz, S.W., Standing, J.R., Mair, R.J., Hagiwara, T. and Sugiyama, T., 2004. Centrifuge modelling of tunnelling near driven piles. Soils and Foundations, 44(1), 49-56. https://doi.org/10.3208/sandf.44.49
- Kechavarzi, C, Soga, K, de Battista, N, Pelecanos, L, Elshafie, M & Mair, R 2016, Distributed optic fibre sensing for monitoring civil infrastructure: A practical guide. Thomas Telford. London.
- Kitiyodom, P., Matsumoto, T., Kawaguchi, K., 2005. A simplified analysis method for piled raft foundations subjected to ground movements induced by tunnelling. International Journal for Numerical and Analytical Methods in Geomechanics, 29(15), 1485-1507. https://doi.org/10.1002/nag.469
- Lee, C.J., 2012. Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock. Tunnelling and Underground Space Technology, 32, 132-142. https://doi.org/10.1016/j.tust.2012.06.005
- Lee, C.J. and Jacobsz, S.W., 2006. The influence of tunnelling on adjacent piled foundations. Tunnelling and Underground Space Technology 21(3-4), 430. https://doi.org/10.1016/j.tust.2005.12.072
- Loganathan, N. and Poulos, H.G., 1998. Analytical prediction for tunneling-induced ground movements in clays. Journal of Geotechnical and Geoenvironmental Engineering, 124(9), 846-856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
- Loganathan, N., Poulos, H.G. and Stewart, D.P., 2000. Centrifuge model testing of tunnelling-induced ground and pile deformations. Geotechnique, 50(3), 283-294. https://doi.org/10.1680/geot.2000.50.3.283
- Loganathan, N., Poulos, H.G. and Xu, K.J., 2001. Ground and pile-group responses due to tunnelling. Soils and Foundations, 41(1), 57-67. https://doi.org/10.3208/sandf.41.57
- Mair, R.J., 1979. Centrifugal modelling of tunnel construction in soft clay. PhD Thesis. University of Cambridge.
- Marshall, A.M., 2012. Tunnel-pile interaction analysis using cavity expansion methods. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1237-1246. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000709
- Pelecanos, L, Soga, K, Chunge, MPM, Ouyang, Y, Kwan, V, Kechavarzi, C & Nicholson, D 2017, Distributed fibre-optic monitoring of an Osterberg-cell pile test in London, Geotechnique Letters, 7(2), 1-9. https://doi.org/10.1680/jgele.16.00088
- Pelecanos, L., Soga, K., Elshafie, M.Z., de Battista, N., Kechavarzi, C., Gue, C.Y., Ouyang, Y. and Seo, H.J., 2017. Distributed Fiber Optic Sensing of Axially Loaded Bored Piles. Journal of Geotechnical and Geoenvironmental Engineering, 144(3), 04017122. https://doi.org/10.1061/(asce)gt.1943-5606.0001843
- Potts, D.M. and Addenbrooke, T.I., 1997, A structure's influence on tunnelling-induced ground movements. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 125(2), 109-125. https://doi.org/10.1680/igeng.1997.29233
- Potts, D.M. and Zdravkovic, L., 1999, Finite element analysis in geotechnical engineering: theory. Thomas Telford, London.
- Potts, D.M. and Zdravkovic, L., 2001, Finite element analysis in geotechnical engineering: application. Thomas Telford, London.
- Puzrin, A.M., Burland, J.B. and Standing, J.R., 2012. Simple approach to predicting ground displacements caused by tunnelling in undrained anisotropic elastic soil. Geotechnique, 62(4), 341-352. https://doi.org/10.1680/geot.10.P.127
- Randolph, M.F., and Wroth, C.P., 1978. Analysis of deformation of vertically loaded piles. Journal of Geotechnical Engineering Division, ASCE, 104(12), 1465-1485. https://doi.org/10.1061/AJGEB6.0000729
- Sagaseta, C., 1987. Analysis of undraind soil deformation due to ground loss. Geotechnique, 37(3), 301-320. https://doi.org/10.1680/geot.1987.37.3.301
- Schofield, A.N., 1980. Cambridge geotechnical centrifuge operations. Geotechnique, 30(3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227
- Soga, K., Kwan, V., Pelecanos, L., Rui, Y., Schwamb, T., Seo, H. and Wilcock, M., 2015. The role of distributed sensing in understanding the engineering performance of geotechnical structures. XVI European Conference on Soil Mechanics and Geotechnical Engineering (XVI ECSMGE), Edinburgh, UK.
- Soga, K, Kechavarzi, C, Pelecanos, L, de Battista, N, Williamson, M, Gue, CY, Di Murro, V & Elshafie, M 2017, Distributed fibre optic strain sensing for monitoring underground structures - Tunnels Case Studies. in S Pamukcu & L Cheng (eds), Underground Sensing: Monitoring and Hazard Detection for Environment and Infrastructure. Elsevier.
- Surjadinata, J., Hull, T.S., Carter, J.P. and Poulos, H.G., 2006. Combined finite-and boundary-element analysis of the effects of tunneling on single piles. International Journal of Geomechanics, 6(5), 374-377. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:5(374)
- Verruijt, A. and Booker, J.R., 1998. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique, 48(5), 709-713. https://doi.org/10.1680/geot.1998.48.5.709
- Vesic, A.B., 1961. Bending of beams resting on isotropic elastic solid. Journal of the Engineering Mechanics Division, 87(EM2, Part 1), 35-53. https://doi.org/10.1061/JMCEA3.0000212
- Williamson, M.G., Elshafie, M.Z.E.B., Mair, R.J. and Devriendt, M.D., 2017a. Open-face tunnelling effects on non-displacement piles in clay-part 1: centrifuge modelling techniques. Geotechnique, 67(11), 983-1000. https://doi.org/10.1680/jgeot.sip17.P.119
- Williamson, M.G., Mair, R.J., Devriendt, M.D. and Elshafie, M.Z.E.B., 2017b. Open-face tunnelling effects on non-displacement piles in clay-part 2: tunnelling beneath loaded piles and analytical modelling. Geotechnique, 67(11), 1001-1019. https://doi.org/10.1680/jgeot.SIP17.P.120
- Xu, K.J. and Poulos, H.G., 2001. 3-D elastic analysis of vertical piles subjected to "passive" loadings. Computers and Geotechnics, 28(5), 349-375. https://doi.org/10.1016/S0266-352X(00)00024-0