참고문헌
- P.V. Danchev, Invo-clean unital rings, Commun. Korean Math. Soc. 32(1) (2017), 19-27. https://doi.org/10.4134/CKMS.C160054
- P.V. Danchev, Weakly invo-clean unital rings, Afr. Mat. 28(7-8) (2017), 1285-1295. https://doi.org/10.1007/s13370-017-0515-7
- P.V. Danchev, Feebly invo-clean unital rings, Ann. Univ. Sci. Budapest (Sect. Math.) 60 (2017), 85-91.
- P.V. Danchev, A generalization of fine rings, Palest. J. Math. 7(2) (2018), 425-429.
- P.V. Danchev, A note on fine WUU rings, Palest. J. Math. 7(2) (2018), 430-431.
- P.V. Danchev, Rings whose elements are sums of three or minus sums of two commuting idempotents, Alban. J. Math. 12(1) (2018), 3-7.
- P.V. Danchev, Rings whose elements are represented by at most three commuting idempotents, Gulf J. Math. 6(2) (2018), 1-6.
- P.V. Danchev, Rings whose elements are sums of three or difference of two commuting idempotents, Bull. Iran. Math. Soc. 44(6) (2018), 1641-1651. https://doi.org/10.1007/s41980-018-0113-y
- P.V. Danchev, Rings whose elements are sums or minus sums of two commuting idempotents, Boll. Un. Mat. Ital. 12(3) (2019).
- P.V. Danchev and E. Nasibi, The idempotent sum number and n-thin unital rings, Ann. Univ. Sci. Budapest (Sect. Math.) 59 (2016), 85-98.
- Y. Hirano and H. Tominaga, Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc. 37 (1988), 161-164. https://doi.org/10.1017/S000497270002668X
- T.Y. Lam, A First Course in Noncommutative Rings, Second Edition, Graduate Texts in Math., Vol. 131, Springer-Verlag, Berlin-Heidelberg-New York, 2001.
- G. Tang, Y. Zhou and H. Su, Matrices over a commutative ring as sums of three idempotents or three involutions, Lin. and Multilin. Algebra 67(2) (2019), 267-277. https://doi.org/10.1080/03081087.2017.1417969
- Z. Ying, T. Kosan and Y. Zhou, Rings in which every element is a sum of two tripotents, Can. Math. Bull. 59(3) (2016), 661-672. https://doi.org/10.4153/CMB-2016-009-0