FIGURE 1. The curve α(s) in terms of its harmonic curvature function. To see that different examples about this subject, you can look Ali's study in [3].
FIGURE 2. Rectifying Salkowski Curve γ (φ)
FIGURE 3. Rectifying Anti Salkowski Curve α (ψ)
FIGURE 4. κ(s) = 1 and τ(s) = s
FIGURE 5.
참고문헌
- A. O. Ogrenmis, H. Oztekin, and M. Ergut, Bertrand curves in Galilean space and their characterizations, Kragujevac Journal of Mathematics, 32 (2009), 139-147.
-
A. O. Ogrenmis, M. Ergut, and M. Bektas, On the helices in the Galilean space
$G_3$ , Iranian Journal of Science and Technology Transaction A: Science, 31(2) (2007), 177-181. -
A. T. Ali, Position vectors of curves in the Galilean space
$G_3$ , Matematiqki vesnik, 64(3) (2012), 200-210. - B. A. Rozenfel'd, Non-Euclidean spaces, Moscow, 1969.
-
B. J. Pavkovic, The general solution of the Frenet system of differential equations for curves in the Galilean space
$G_3$ , Rad HAZU Math, 450 (1990), 123-128. -
B. J. Pavkovic, I. Kamenarovic, The equiform differential geometry of curves in the Galilean space
$G_3$ , Glasnik mat., 22(42) (1987), 449-457. - B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110 (2003), 147-152. https://doi.org/10.1080/00029890.2003.11919949
- E. Salkowski, Zur transformation von raumkurven, Mathematische Annalen., 66(4) (1909), 517-557. https://doi.org/10.1007/BF01450047
-
H. Oztekin, Normal and rectifying curves in Galilean Space
$G_3$ , Proceedings of IAM, 5(1) (2016), 98-109. - I. M. Yaglom, A Simple non-Euclidean geometry and its physical basis, New York, 1979.
- J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion, Computer Aided Geometric Design, 26 (2009), 271-278. https://doi.org/10.1016/j.cagd.2008.10.002
-
M. O. Yun, L. S. Ye, A Curve Satisfying
${\tau}/{\kappa}=s$ with constant${\kappa}>0$ , American Journal of Undergraduate Research, 12(2) (2015), 57-62. - O. Roschel, Die Geometrie Des Galileischen Raumes, Berichte der Math.-Stat. Sektionim Forschumgszentrum Graz, Ber., 256 (1986), 1-20.
- R. Penrose, Structure of space-time C. M. DeWitt (ed.), J. A. Wheeler (ed.), Batelle Rencontres 1967 Lectures in Math. Physics, Benjamin, (1968), 121-235.
- Z. Erjavec, On Generalization of Helices in the Galilean and the Pseudo-Galilean Space, Journal of Mathematics Research, 6 (3) (2014), 39-50. https://doi.org/10.5539/jmr.v6n3p39