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RINGS WHOSE ELEMENTS ARE SUMS OF FOUR

COMMUTING IDEMPOTENTS

Peter V. Danchev

Abstract. We completely characterize the isomorphic class of those
associative unitary rings whose elements are sums of four commut-
ing idempotents. Our main theorem enlarges results due to Hirano-
Tominaga (Bull. Austral. Math. Soc., 1988), Tang et al. (Lin. &
Multilin. Algebra, 2019), Ying et al. (Can. Math. Bull., 2016) as
well as results due to the author in (Alban. J. Math., 2018), (Gulf
J. Math., 2018), (Bull. Iran. Math. Soc., 2018) and (Boll. Un.
Mat. Ital., 2019).

1. Introduction and Background

Everywhere in the text of the present paper, all our rings R are
assumed to be associative, containing the identity element 1, which in
general differs from the zero element 0 of R, and all subrings are unital
(i.e., containing the same identity as that of the former ring). Our
notions and notations are mainly in agreement with [12]. For instance,
to be more precise, U(R) denotes the set of all units in R, Id(R) the
set of all idempotents in R, Nil(R) the set of all nilpotents in R, and
J(R) the Jacobson radical of R. All other conventions, which are not
explicitly defined herein, will be stated below in detail.

Imitating the terminology from [8], we shall consider here rings R
from the class C4+, that is, R = Id(R) + Id(R) + Id(R) + Id(R) in
which equality the existing idempotents are commuting each to other.
Specifically, one can state the following concept:

Definition 1.1. We shall say that a ring R is of the type C4+ if each
element of R is a sum of (at most) four commuting idempotents.
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Obvious constructions of such rings are the finite rings Zk, where
k = 2, 3, 4, 5, 6. Likewise, in contrast to the given examples in the cited
below literature, the direct product Z5×Z5 lies in the class C4+ of rings,
whereas the field Z7 is not so. Generally, if for any fixed n ∈ N we define
by analogy the ring class Cn+ consisting of elements represented as the
sum of n commuting idempotents, and if n+1 = p is a prime number, it
follows that the field Zp satisfies this property (compare with [10], too).

Despite of the techniques developed in [6]-[9], [11], [13] and [14], we
here need somewhat of another methodology for the development of the
case n = 4. To that aim, we will use some properties of the polynomial
ring (see, for more account, the proof of Proposition 2.2 listed below).

A brief history of the principally known results in the topic is as
follows: Boolean rings, that are rings in which every element is an idem-
potent, were described in the past as the subdirect products of copies
of the field Z2. Generalizing this famous classical result, Hirano and
Tominaga studied in [11] those rings whose elements are sums of two
commuting idempotents and, especially, they proved that these rings
are subdirect products of copies of the fields Z2 and Z3. Further inten-
sive work is done in [14] where rings in which the elements are sums
or differences of two commuting idempotents were classified. In this di-
rection, in [9] the rings whose elements are sums or minus sums of two
commuting idempotents were characterized, too. After that, in [13] and
[8] were independently described those rings in which the elements are
sums of three commuting idempotents. Various other aspects of rings
with combinations of at most three idempotents are considered in [6]
and [7], respectively, as sums of idempotents in some other but closely
related variations are explored in [10], [4] and [5] as well.

That is why, it is quite natural to continue these investigations for
sums of four idempotents and our basic motivation here is to promote
this in a rather attractive way by diving up the complete characterization
result up to an isomorphism.

2. Main Results

We start with one useful technicality.

Lemma 2.1. Suppose R is a C4+ ring. Then R can be decomposed
as the direct product R ∼= R1 ×R2 ×R3 for some C4+ rings R1, R2, R3

with 4 = 22 = 0 in R1, 3 = 0 in R2 and 5 = 0 in R3.
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Proof. We assert that the equality 4 × 3 × 5 = 0 holds in such a
ring R. In fact, writing −1 = e1 + e2 + e3 + e4 for some commuting
idempotents e1, e2, e3, e4, whence −2 = e1 + e2 + e3 − (1 − e4) = e1 +
e2 + e3 − e′4. We may with no harm of generality assume that e1e

′
4 =

e2e
′
4 = e3e

′
4 = 0; indeed, e3 − e′4 = e3(1− e′4)− e′4(1− e3) is a difference

of two orthogonal idempotents. Further, using the formula a − b =
a(1 − b) − b(1 − a) for any elements a, b with ab = ba, we deduce that
e2−e′4(1−e3) = e2(1−e′4(1−e3))−e′4(1−e3)(1−e2) is also a difference of
two commuting idempotents as e3(1−e′4).e′4(1−e3)(1−e2) = 0 and etc.,
we can proceed by analogy with e1 to verify our assumption. So, under
these circumstances, multiplying −2 = e1 + e2 + e3− e′4 by e′4, we obtain
that e′4 = 0 and thus −2 = e1+e2+e3. Writing −3 = e1+e2−(1−e3) =
e1 + e2 − e′3, we may exploit the same idea to get that e1e

′
3 = e2e

′
3 = 0.

Therefore, a multiplication of −3 = e1 + e2 − e′3 by e′3 assures that
2e′3 = 0. However, multiplying this with 1 − e and next, squaring the
outcome, will ensure by simple manipulation that 12(1 − e1) = 0, i.e.,
12e1 = 12 as e′3 = −e′3. Similarly, 12e2 = 12. Consequently, one has
that −36 = 12 + 12, that is, 60 = 22 × 3× 5 = 0, as asserted.

Finally, the Chinese Remainder Theorem yields our initial claim on
the decomposition of R into direct factors, as stated.

The next statement sheds some light on the idempotent sum property
in subdirect products of fields of prime characteristic.

Proposition 2.2. Let R be a ring of characteristic 5. Then R ∈ C4+

if, and only if, x5 = x for all x ∈ R.

Proof. ”⇒”. If r ∈ R is written as r = e + f + g + h for some four
commuting idempotents, it is easily checked with the standard binomial
formula at hand that r5 = (e+ f + g + h)5 = e+ f + g + h = r, taking
into account that 5 = 0 in R.

”⇐”. Let x be an arbitrary non-identity element in R. Then the
subring, say S, generated by 1 and x has the same property: its char-
acteristic is equal to 5 and y5 = y for every y ∈ S. So, without loss
of generality, we may replace R by this subring S and it suffices to
prove the wanted decomposition property there. Indeed, if we can find
4 idempotents in S whose sum is exactly x, then they are also in R.

To that purpose, we first claim that the subring S is commutative
and is isomorphic to a quotient of the factor-ring Z5[X]/(X5 −X). In
fact, that is trivial by considering the surjective ring homomorphism
Z5[X] → S defined by mapping X to x. That is why, it is enough
to show the desired idempotent property for the ring Z5[X]/(X5 −X)
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which is obviously a direct product of precisely 5 copies of the field Z5.
However, since the existing there idempotents are the five-sized vectors
with coordinates only 0 and/or 1 and since the elements of Z5 are exactly
{0, 1, 2, 3, 4} as 2 = 1+1, 3 = 1+1+1 and 4 = 1+1+1+1, this is pretty
easy, which technical details we leave to the interested readers.

Remark 2.3. Certainly, it is worthy to mention that if all elements
of the ring R of characteristic 5 satisfy the equality x5 = x, then R is
a subdirect product (finite or infinite) of a family of copies of the field
Z5 (see, e.g., [12]) and that, in this direct product, it readily could be
verified that all elements are sums of exactly four idempotents. Never-
theless, it is not at all obvious that the same relation remains true and in
R, while our idea presented above unambiguously shows the truthfulness
of this fact, thus increasing the assertion.

Likewise, by the same token as in Proposition 2.2, it could be suc-
cessfully proved that R ∈ C2+ ⇐⇒ x3 = x ∀x, thus giving up a new
more transparent proof of the chief result from [11].

We now have all the ingredients necessary to proceed by proving the
following chief result.

Theorem 2.4. A ring R is from the class C4+ if, and only if, it
is decomposable as R ∼= R1 × R2 × R3, where R1 = {0} or R1 is a
commutative ring such that J(R1) = 2Id(R1) is nil of nilpotence index
less than or equal to 2 and the quotient R1/J(R1) is a Boolean ring,
R2 = {0} or R2 is a subdirect product of copies of the field Z3, and
R3 = {0} or R3 is a subdirect product of copies of the field Z5.

Proof. ”Necessity.” According to Lemma 2.1 one writes that R ∼=
R1 × R2 × R3, where R1, R2, R3 are rings in which 4 = 0, 3 = 0 and
5 = 0, respectively. Moreover, with this at hand, it is self-evident that
all of the three direct factors inherit the property to be C4+ rings. We
next differ the description of these three factors separately.

Describing R1: Here 4 = 0. We intend to prove that R1/J(R1) is
a Boolean factor-ring and that J(R1) = 2Id(R1). To this purpose,
we foremost see that the elements in R1 are solutions of the equations
x2 = x4 and 2x = 2x2. In fact, writing x = e1+e2+e3+e4 for some four
commuting each to other idempotents e1, e2, e3, e4, one sees that x2 =
x+ 2(e1e2 + e1e3 + e1e4 + e2e3 + e2e4 + e3e4) which immediately implies
the validity of the two equations quoted above, taking into account that
4 = 0.

Now, since 22 = 0 yields that 2 ∈ Nil(R1) and so 2 ∈ J(R1), it
readily follows that the quotient R1/J(R1) is a ring of characteristic 2
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whose elements are sums of four commuting idempotents, and thus it is
necessarily Boolean.

As for J(R1), choosing an arbitrary element z ∈ J(R1), by what we
have shown so far, z4 = z2 so that z2(z2 − 1) = 0 meaning that z2 = 0
because z2 − 1 ∈ U(R1). Also, 2z2 = 2z and therefore 2z(z − 1) = 0
leading to 2z = 0 since z − 1 ∈ U(R1). With these two equalities
at hand, we will establish now that J(R1) = 2Id(R1). In fact, as
z + 1 is representable as a sum of four commuting idempotents, we
may freely write as in Lemma 2.1 that z = f1 + f2 + f3 − f4 for some
four commuting idempotents f1, f2, f3, f4, where f1, f2, f3 are orthogo-
nal with f4. Furthermore, squaring the current equality for z, we arrive
at z = 2(f4 + f1f2 + f2f3 + f1f3). On the other hand, multiplying
z = f1 + f2 + f3 − f4 by f1f2f3, we deduce that zf1f2f3 = 3f1f2f3 =
−f1f2f3 because 4 = 0. So, (z + 1)f1f2f3 = 0 allowing us to derive
that f1f2f3 = 0 since z + 1 inverts in R1. But this enables us that
f4, f1f2, f2f3, f1f3 are para-wise orthogonal idempotents, whence their
sum is surely an idempotent, as expected. Consequently, one concludes
that z ∈ 2Id(R1), as promised, and thereby the relation sustained.

Describing R2: Here 3 = 0. We intend to prove that R2 is a subdirect
product of family of copies of the field Z3. To this aim, we simple observe
that all elements in R2 are solutions of the equation x3 = x and further
employ [11] to infer the wanted assertion.

Describing R3: Here 5 = 0. We intend to prove that R3 is a subdirect
product of family of copies of the field Z5. To this goal, we just observe
that all elements in R3 are solutions of the equation x5 = x and then
apply [12] to get the desired assertion.

”Sufficiency.” If we succeed to prove that each of the rings R1, R2

and R3 is from the class C4+, then it will follow directly by virtue of
standard coordinate-wise arguments that R1×R2×R3

∼= R lies in C4+

too. To that strategy, we shall consider these three rings separately as
follows:

Considering R1: Since R1/J(R1) is Boolean, it follows that for every
r ∈ R1 the relationship r2 − r ∈ J(R1) = 2Id(R1) is fulfilled. However,
J(R1) is nil and, as it is well-known, there exists f ∈ Id(R1) such that
f − r ∈ 2Id(R1). Finally, r must be a sum of three idempotents (as
4 = 0) and, consequently, R1 belongs to the class C3+ and so also to the
class C4+.

Considering R2: In virtue of [11], it follows immediately that R2 belongs
to the class C2+ and thus it is in the class C4+ as well.
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Considering R3: In view of Proposition 2.2, it follows immediately that
R3 belongs to the class C4+.

It is worthwhile to mention that the commutative ring R1 from the
decomposition of R is also an invo-clean ring, that is, every its element
is the sum of an idempotent and an involution (for more details, see [1],
[2] and [3]), and vice versa when the index of nilpotence is at most 2. In
fact, for any commutative ring K having the property 4 = 0 and whose
elements satisfy the polynomial identities x4 = x2 and 2x2 = 2x for all
x ∈ K, it must be that x = (1 − x2) + (x2 + x − 1). A routine check
shows that 1 − x2 is an idempotent, i.e., (1 − x2)2 = 1 − x2, whereas
x2 + x− 1 is an involution, i.e., (x2 + x− 1)2 = 1.

Conversely, assuming K is a commutative invo-clean ring of even
characteristic not exceeding 4 and index of nilpotence at most 2, and
writing for any x ∈ K that x = e + v, where e ∈ K with e2 = e
and v ∈ K with v2 = 1, we obtain that x2 = 1 + e + 2ev, and hence
2x2 = 2e + 2 along with 2x = 2e + 2v. But we claim that 2v = 2, so
that x2 = 1 + 3e = 1− e = x4 accomplished with 2x2 = 2x, as required.
Indeed, one observes that (1−v)2 = 2(1−v) whence, (1−v)4 = 0 which,
in the presence of our initial assumptions, leads to (1− v)2 = 0, i.e., to
2 = 2v, as claimed. This substantiates our statement.

Besides, one more useful observation is that the proof of Theorem 2.4
illustrates the surprising fact that the classes C4+ and C3+ do coincide
when 4 = 0.

We shall now give a few more constructions of rings from the class
C4+.

Example 2.5. As it was already established in Theorem 2.4, the
rings from the class C4+ are necessarily commutative. As more specific
constructions of such rings, could be viewed the following ones:

• The direct product L =
∏
λ Z2, where λ is a finite or infinite cardi-

nal.

• The direct product L =
∏
µ Z4, where µ is a finite or infinite cardi-

nal.
In fact, simple calculations show that J(L) = 2Id(L) because J(Z4) =

{0, 2} = 2Z4 = 2Id(Z4) in conjunction with J(L) =
∏
µ 2Z4, so that the

quotient ring L/J(L) ∼=
∏
µ Z2 is obviously Boolean.

• The direct product L =
∏
ν Z3, where ν is a finite or infinite cardi-

nal.
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• The direct product L =
∏
α Z5, where α is finite or infinite cardinal.

as well as arbitrary combinations between the above direct products.

We end our work with the following:

Problem. Characterize up to an isomorphism the class of
Cn+ rings, where n ≥ 1 is an integer.

In regard to this, one states the following:

Conjecture. For a fixed n ∈ N, all Cn+ rings are themselves commu-
tative.
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