DOI QR코드

DOI QR Code

A Study on Optimal Design of Capacitance for Active Power Decoupling Circuits

능동 전력 디커플링 회로의 커패시턴스 최적 설계에 관한 연구

  • Received : 2018.09.30
  • Accepted : 2018.11.29
  • Published : 2019.06.20

Abstract

Active power decoupling circuits have emerged to eliminate the inherent second-order ripple power in a single-phase power conversion system. This study proposes a design method to determine the optimal capacitance for active power decoupling circuits to achieve high power density. Minimum capacitance is derived by analyzing ripple power in a passive power decoupling circuit, a buck-type circuit, and a capacitor-split-type circuit. Double-frequency ripple power decoupling capabilities are also analyzed in three decoupling circuits under a 3.3 kW load condition for a battery charger application. To verify the proposed design method, the performance of the three decoupling circuits with the derived minimum capacitance is compared and analyzed through the results of MATLAB -Simulink and hardware-in-the-loop simulations.

Keywords

JRJJC3_2019_v24n3_181_f0001.png 이미지

Fig. 1. Traditional passive power decoupling circuit.

JRJJC3_2019_v24n3_181_f0002.png 이미지

Fig. 2. Representation of α angle.

JRJJC3_2019_v24n3_181_f0003.png 이미지

Fig. 3. Buck-type active power decoupling circuit.

JRJJC3_2019_v24n3_181_f0004.png 이미지

Fig. 4. Capacitor-split-type active power decoupling circuit.

JRJJC3_2019_v24n3_181_f0007.png 이미지

Fig. 7. Buck-type APD simulation results.

JRJJC3_2019_v24n3_181_f0008.png 이미지

Fig. 8. Capacitor-split-type APD simulation results.

JRJJC3_2019_v24n3_181_f0009.png 이미지

Fig. 9. HILS experimental setup.

JRJJC3_2019_v24n3_181_f0012.png 이미지

Fig. 11. Passive power decoupling experimental results.

JRJJC3_2019_v24n3_181_f0013.png 이미지

Fig. 12. Buck-type APD experimental results.

JRJJC3_2019_v24n3_181_f0014.png 이미지

Fig. 5. DC-Link voltage according to decoupling method (Simulation results).

JRJJC3_2019_v24n3_181_f0015.png 이미지

Fig. 6. Passive power decoupling simulation results.

JRJJC3_2019_v24n3_181_f0016.png 이미지

Fig. 10. DC-Link voltage according to decoupling method (Experimental results).

JRJJC3_2019_v24n3_181_f0017.png 이미지

Fig. 13. Capacitor-split-type APD experimental results.

TABLE I PARAMETERS OF CAPACITOR MODEL

JRJJC3_2019_v24n3_181_t0001.png 이미지

TABLE II PARAMETERS OF RIPPLE POWER DECOUPLING

JRJJC3_2019_v24n3_181_t0002.png 이미지

TABLE III TOTAL VOLUME OF CAPACITOR ACCORDING TO DECOUPLING METHOD

JRJJC3_2019_v24n3_181_t0003.png 이미지

References

  1. Ya. Sun, Y. L. M. Su, W. Xiong, and J. Yang, "Review of active power decoupling topologies in single-phase systems", IEEE Transactions on Power Electronics, Vol. 31, pp. 4778-4794, Jul. 2016. https://doi.org/10.1109/TPEL.2015.2477882
  2. Q. C. Zhong, W. L. Ming, X. Cao, and M. Krstic, "Reduction of DC bus voltage ripples and capacitors for single-phase PWM-controlled rectifiers," in Proc. IEEE Annu. Conf. Ind. Electron. Soc., Montreal, QC, Canada, pp. 1308-1313, 2012.
  3. L. Palma, "An active power filter for lowfrequency ripple current reduction in fuel cell applications," in Proc. IEEE Int. Symp. Power Electron. Elect. Drives Autom. Motion, Pisa, Italy, pp. 1308-1313, 2010.
  4. Y. Yang, X. Ruan, L. Zhang, J. He, and Z. Ye, “Feed-forward scheme for an electrolytic capacitorless AC/DC LED driver to reduce output current ripple,” IEEE Trans. Power Electron., Vol. 29, No. 10, pp. 5508-5517, Jun. 2014. https://doi.org/10.1109/TPEL.2013.2293353
  5. F. Schimpf and L. Norum, "Effective use of film capacitors in single-phase PV-inverters by active power decoupling," in Proc. IEEE Annu. Conf. Ind. Electron. Soc., Glendale, AZ, USA, pp. 2784-2789, 2010.
  6. X. Cao, Q. Zhong, and W. Ming, “Ripple eliminator to smooth DC-Bus voltage and reduce the total capacitance required,” IEEE Trans. Power Electron., Vol. 62, No. 4, pp. 2224-2235, Apr. 2015.
  7. M. Saito and N. Matsui, "Modeling and control strategy for a single-phase PWM rectifier using a single-phase instantaneous active/reactive power theory," in Proc. 25th Int. Telecommun. Energy Conf., pp. 573-578. 2003.
  8. R. Wang, F. Wang, D. Boroyevich, R. Burgos, R. Lai, P. Ning, and K. Rajashekara, “A high power density single-phase PWM rectifier with active ripple energy storage,” IEEE Trans. Power Electron., Vol. 26, No. 5, pp. 1430-1443, May 2011. https://doi.org/10.1109/TPEL.2010.2090670
  9. Y. Tang, F. Blaabjerg, P. C. Loh, C. Jin, and P. Wang, “Decoupling of fluctuating power in single-phase systems through a symmetrical halfbridge circuit,” IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 1855-1865, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2327134
  10. Y. Tang, F. Blaabjerg, and P. C. Loh, “A dual voltage control strategy for single-phase PWM converters with power decoupling function,” IEEE Trans. Power Electron., Vol. 30, No. 12, pp. 7060-7071, Dec. 2015. https://doi.org/10.1109/TPEL.2014.2385032
  11. H. V. Nguyen and D. C. Lee, "Single-phase multifunctional onboard battery chargers with active power decoupling capability," 2018 IEEE Applied Power Electronics Conf. (APEC), pp. 3434-3439, Mar. 2018.