Fig. 1. Neighbour-joining tree based on analysis of partial 16S rDNA nucleotide sequences of the selected bacterial strain B18. The percentage of replicate trees in which associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. Evolutionary distances were computed using the Kimura 2-parameter method (Kimura, 1980); the results are presented in units of the number of base substitutions per site. In phylogenetic tree, Bacillus subtilis is one type strain.
Fig. 2. Antagnistic effect of culture filtrate of B. methylotrophicus B18. (A) Growth inhibition curve by the B18 solution on mycelium of the pathogenic fungusError bars indicate means ± SD (n = 3); ddifferent lowercase letters indicate significant difference between controls and treatments at different times at P < 0.05 by the LSD test. (B) Antagonistic effect of the B18 bacterial solution (106 cfu/ml) against a pathogenic fungus. (C) Effect of the fermentation sterile culture filtrate on mycelial morphology of the pathogenic fungus. a: Normal mycelium; b: The concentration of biocontrol bacteria B18 is 106 cfu/ml; c: The concentration of biocontrol bacteria B18 is 108 cfu/ml. (D) Effect of the fermentation sterile culture filtrate on spores of the pathogenic fungus. a: Germination of spores at a concentration of 1%; b: Germination of spores at a concentration of 50%.
Table 2. Physiological and biochemical characteristics of strain B18
Table 1. Inhibitory effects of five bacterial strains (culture 5 days)
Table 3. Control effect of the endophytic bacterium strain B18 after 30 days in a pot experiment
Table 4. Effect of the endophytic bacterium strain B18 on canker rot in Phellodendron amurense in a field experiment
Table 5. Inhibitory effect of B18 sterile culture filtrate on the germination of Nectria haematococca spores
References
- Abbas, T., Zahir, Z. A. and Naveed, M. 2017. Bioherbicidal activity of allelopathic bacteria against weeds associated with wheat and their effects on growth of wheat under axenic conditions. BioControl 62:719-730. https://doi.org/10.1007/s10526-017-9836-6
- Azad, M. A. K., Yokota, S., Ohkubo, T., Andoh, Y., Yahara, S. and Yoshizawa, N. 2005. In vitro, regeneration of the medicinal woody plant Phellodendron amurense Rupr. through excised leaves. Plant Cell Tissue Organ Cult. 80:43-50. https://doi.org/10.1007/s11240-004-8809-5
- Baltz, R. H. 2016. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J. Ind. Microbiol. Biotechnol. 43:343-370. https://doi.org/10.1007/s10295-015-1682-x
- Bekierkunst, A. and Szulga, T. 1954. A new method for determining the growth rate of M. tuberculosis and its application to the study of the toxic effects of Streptomycin and isonicotinic hydrazide acid on tubercle bacilli. Schweiz. Z. Pathol. Bakteriol. 17:47-72.
- Boukaew, S., Prasertsan, P., Troulet, C. and Bardin, M. 2017. Biological control of tomato gray mold caused by Botrytis cinerea, by using Streptomyces spp.. BioControl 62:793-803. https://doi.org/10.1007/s10526-017-9825-9
- Chandankere, R., Yao, J., Choi, M. M. F., Masakorala, K. and Chan, Y. 2013. An efficient biosurfactant producing and crude-oil emulsifying bacterium Bacillus methylotrophicus USTBa isolated from petroleum reservoir. Biochem. Eng. J. 74:46-53. https://doi.org/10.1016/j.bej.2013.02.018
- Chandankere, R., Yao, J., Cai, M., Masakorala, K., Jain, A. K. and Choi, M. M. F. 2014. Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140-148. https://doi.org/10.1016/j.fuel.2014.01.023
- Edwards, T. and McBride, B. C. 1975. New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. 29:540-545. https://doi.org/10.1128/AEM.29.4.540-545.1975
- Etesami, H. and Alikhani, H. A. 2017. Evaluation of grampositive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa, L.) pathogens. Eur. J. Plant Pathol. 147:7-14. https://doi.org/10.1007/s10658-016-0981-z
- Faltin, F., Lottmann, J., Grosch, R. and Berg, G. 2004. Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kuhn. Can. J. Microbiol. 50:811-820. https://doi.org/10.1139/w04-063
- Fei, Y. T., Liu, D. M., Luo, T. H., Chen, G., Wu, H., Li, L. and Yu, Y. G. 2014. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity. PLoS One 9:e113792. https://doi.org/10.1371/journal.pone.0113792
- Frikha-Gargouri, O., Abdallah, D. B., Ghorbel, I., Charfeddine, I., Jlaiel, L., Triki, M. A. and Tounsi, S. 2017. Lipopeptides from a novel Bacillus methylotrophicus 39b strain suppress Agrobacterium crown gall tumours on tomato plants. Pest Manag. Sci. 73:568-574. https://doi.org/10.1002/ps.4331
- Hornby, D. 1969. Gravimetrical and mycological investigations of soil suspensions in the soil dilution plate technique. J. Appl. Bacteriol. 32:244-258. https://doi.org/10.1111/j.1365-2672.1969.tb00971.x
- Hoyt, J. R., Cheng, T. L., Langwig, K. E., Hee, M. M., Frik, W. F. and Kilpatrict A. M. 2015. Bacteria isolated bats inhibit growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PLoS One 10:e0121329. https://doi.org/10.1371/journal.pone.0121329
- Iasur-Kruh, L., Zahavi, T., Barkai, R., Freilich, S., Zchori-Fein, E. and Naor, V. 2018. Dyella-Like bacterium isolated from an insect as a potential biocontrol agent against Grapevine yellows. Phytopathology 108:336-341. https://doi.org/10.1094/PHYTO-06-17-0199-R
- Jiao, W., Zhou, R., Fu, J., Xu, H. and Hao, N. 2017. First report of Nothophoma quercina causing leaf spot disease of Phellodendron amurense in China. Plant Dis. 101:1820.
- Kamal, M. M., Lindbeck, K. D., Savocchia, S. and Ash, G. J. 2016. Biological control of Sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol. 64:1375-1384. https://doi.org/10.1111/ppa.12369
- Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
- Kumar, R. and Hwang, J. S. 2006. Larvicidal efficiency of aquatic predateors: A perspective for mosquito biocontrol. Zoological Stud. 45:447-466.
- Li, S. J., Cui, Y. T., Fang, X. M., He, Q. Q., Zhu, T. H., Qiao, T. M. and Han, S. 2018. First report of Nectria haematococca as the causal agent of canker rot in Phellodendron amurense in China. Plant Dis. 102:1033.
- Montanari, G., Borsari, A., Chiavari, C., Ferri, G., Zambonelli, C. and Grazia, L. 2004. Morphological and phenotypical characterization of Bacillus sporothermodurans. J. Appl. Microbiol. 97:802-809. https://doi.org/10.1111/j.1365-2672.2004.02371.x
- Obagwu, J. and Korsten, L. 2003. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biol. Technol. 28:187-194. https://doi.org/10.1016/S0925-5214(02)00145-X
- Passari, A. K., Lalsiamthari, P. C., Zothanpuia, Leo, V. V., Mishra, V. K., Yadav, M. K., Gupta, V. K. and Singh, B. P. 2018. Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential. Eur. J. Plant Pathol. 150:831-846. https://doi.org/10.1007/s10658-017-1325-3
-
Peng, Y., Jiang, B., Zhang, T., Mu, W., Miao, M. and Hua, Y. 2015. High-level production of poly (
${\gamma}$ -glutamic acid) by a newly isolated glutamate-independent strain Bacillus methylotrophicus. Process Biochem. 50:329-335. https://doi.org/10.1016/j.procbio.2014.12.024 - Perez-Flores, P., Valencia-Cantero, E., Altamirano-Hernandez, J., Pelagio-Flores, R., Lopez-Bucio, J., Garcia-Juarez, P. and Macias-Rodriguez, L. 2017. Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma 254:2201-2213. https://doi.org/10.1007/s00709-017-1109-9
- Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., Feng, Z., Ma, Z. and An, D. 2013. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Prot. 44:29-37. https://doi.org/10.1016/j.cropro.2012.10.012
-
Sun, P., Hui, C., Wang, S., Khan, R. A., Zhang, Q. and Zhao, Y. H. 2016. Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic
$Fe_3O_4$ nanoparticles and wheat bran. J. Hazard. Mater. 301:65-73. https://doi.org/10.1016/j.jhazmat.2015.08.048 - Sorensen, C. K., Thach, T. and Hovmoller, M. S. 2016. Evaluation of spray and point inoculation methods for the phenotyping of Puccinia striiformis on wheat. Plant Dis. 100:1064-1070. https://doi.org/10.1094/PDIS-12-15-1477-RE
- Tang, W. and Eisenbrand, G. 1992. Phellodendron amurense Rupr. In: Chinese drugs of plant origin, eds. by W. Tang and G. Eisenbrand, pp. 759-762. Springer-Verlag, Berlin, Germany.
- Yu, X., Ai, C., Xin, L. and Zhou, G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47:138-145. https://doi.org/10.1016/j.ejsobi.2010.11.001
- Zhang, T., Li, R., Qian, H., Mu, W., Miao, M. and Jiang, B. 2014. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Polym. 101:975-981. https://doi.org/10.1016/j.carbpol.2013.10.045
- Zou, C. L., Zhao, G. C., Jiang, Y. C., Lin, D. Q. and Gu, X. Y. 2015. Screening of a flocculent acetic acid degrading bacterium and its degradative characteristics. J. Nanjing Agric. Univ. 38:830-837.