DOI QR코드

DOI QR Code

Confusion in the Meaning of Induction, Deduction, Hypothetical Deductive Method, and Abduction in Science Instruction Textbooks

과학교육론 교재에서 나타나는 귀납, 연역, 가설연역, 귀추의 의미 혼선

  • Received : 2019.01.29
  • Accepted : 2019.04.19
  • Published : 2019.04.30

Abstract

There have been great concerns on induction, deduction, abduction, and hypothetical deductive method as scientific method and logic behind the method. However, as seen from the similar logic structure of abduction and hypothetical deductive method logic, distinction of those four terms could be unclear. This study investigates statements of science instruction textbooks concerning those terms to analyze their meaning as scientific method or in the context of inquiry. For this purpose, related statements are extracted from seven textbooks to investigate the definitions and examples of those terms and relation among these terms by focusing on coherence of usage of the terms and the possibility of clear distinction among the terms. We find that those terms do not have coherent meanings in the textbooks and many statements make it hard to distinguish the meanings of the terms. Finally the origin of the confusion and educational implication is discussed.

귀납, 연역, 가설연역, 귀추는 과학의 방법, 혹은 그것의 토대를 이루는 논리로서 과학교육에서 주목받아왔다. 그런데 가설연역과 귀추가 갖는 논리적 유사성에서 확인할 수 있듯이 이들 용어들의 구분이 항상 명확한 것은 아니다. 본 연구는 귀납, 연역, 가설연역, 귀추에 대한 과학교육론 교재들의 서술을 조사하여 과학의 방법으로서, 혹은 과학 탐구의 맥락에서 이들 용어들이 사용되는 의미를 분석하였다. 이를 위해 7종의 과학교육학 교재들에서 관련된 서술을 추출하였고, 용어의 정의, 사용된 예시, 다른 용어들과의 관계를 검토하여 용어가 갖는 의미의 일관성과 용어간의 구별가능성을 조사하였다. 분석 결과 교재의 서술에서 용어가 갖는 의미가 일관성을 갖지 못하며, 관련 용어사이의 의미구별을 어렵게 하는 여러 논의들이 발견된다는 문제를 발견할 수 있었다. 이러한 혼선의 원인, 그리고 과학교육의 맥락에서 본 연구가 갖는 교육적 시사점도 논의하였다.

Keywords

References

  1. Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95, 939-969.
  2. Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education, Science Education, 92, 473-498. https://doi.org/10.1002/sce.20278
  3. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218. https://doi.org/10.1002/sce.10001
  4. Cho, H. Y., Kim, H. K., Yoon, H., & Lee, K. Y. (2014). Theories of science education. Paju: Kyoyookbook.
  5. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  6. Giere, R., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning. Belmont, Calif(et al.): Thomson Wadsworth
  7. Giere, R. (2010). An agent-based conception of models and scientific representation. Synthese, 172, 269-281. https://doi.org/10.1007/s11229-009-9506-z
  8. Grandy, R., & Duschl, R. A. (2007). Reconsidering the character and role of inquiry in school science: Analysis of a conference. Science & Education, 16, 141-166. https://doi.org/10.1007/s11191-005-2865-z
  9. Hanson, N. R. (1965). Patterns of discovery: An inquiry into the conceptual foundations of science. CUP Archive.
  10. Hempel, C. G. (1961). Aspects of scientific explanation, New York, NY: The Free Press.
  11. Hodson, D. (2008). Towards scientific literacy: A teachers' guide to the history, philosophy and sociology of science. Rotterdam: Sense Publishers.
  12. Hur, M. (1984). Development of science inquiry evaluation list. Journal of The Korean Association For Science Education, 4(2), 57-63.
  13. Joung, Y. J., & Song, J. W. (2006). Exploring the implications of peirce's abduction in science education by theoretical investigation. Journal of The Korean Association For Science Education, 26(6), 703-722.
  14. Kang, N. H., & Lee, E. K. (2013). Argument and argumentation: A review of literature for clarification of translated words. Journal of The Korean Association For Science Education, 33(6), 1119-1138. https://doi.org/10.14697/jkase.2013.33.6.1119
  15. Kelly, G. J. (2008). Inquiry, activity, and epistemic practice. In R. Duschl & R. Grandy(Eds.), Teaching scientific inquiry: Recommendations for research and implementation(pp. 99-117; 288-291). Rotterdam: Sense Publishers.
  16. Kim, Y. M., Park, Y. B., Park, H. J., Shin, D., Jeong, J. S., & Song, S. (2014). World of Science Education. Seoul: Bookshill.
  17. Kim, Y. S., Kwon, Y. J., Kim, Y. J., Kim, H, Seo, H., Son, Y., Jeong, E. Y., Jeong, J. S., & Cha, H. (2012). Theory of life science education. Paju: Freeacademy.
  18. Kim, H. K., & Song, J. W. (2004). The exploration of open scientific inquiry model emphasizing students' argumentation. Journal of the Korean Association for Science Education, 24(6), 1216-1234.
  19. Kim, H., & Park, E. J. (2008). Logic for critical thinking. Seoul: Acanet.
  20. Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Thousand Oaks, CA: Sage.
  21. Kuhn, T. S. (1977). Objectivity, value judgment, and theory choice. In T. S. Kuhn(Ed.), The Essential Tension(pp. 320-339). Chicago: The University of Chicago Press.
  22. Kwon, Y. J., Jeong, J. S., Park, Y. B., & Kang, M. J. (2003). A philosophical study on the generating process of declarative scientific knowledge-focused on inductive, abductive, and deductive process. Journal of The Korean Association For Science Education, 23(3), 215-228.
  23. Kwon, Y. J., Nam, J. H., Lee, K. Y., Lee, H. N., & Choi, K. H. (2013). Science education. Seoul: Bookshill.
  24. Kwon, J., Kim, B. K., Kang, N. H., Choi, B., Kim, H. N., Paik, S. H., Yang, I. H, Kwon, Y. J., Cha, H., U, J. O., & Jeong, J. W. (2012). Theories of science education. Paju: Kyoyookbook.
  25. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of research in science teaching, 39(6), 497-521. https://doi.org/10.1002/tea.10034
  26. Lee, S. K., Choi, C. I., Lee, G., Shin, M. K., & Song, H. (2013). Exploring Scientific Reasoning in Elementary Science Classroom Discourses. Journal of The Korean Association For Science Education, 33(1), 181-192. https://doi.org/10.14697/jkase.2013.33.1.181
  27. Losee, J. (2001). A historical introduction to the philosophy of science(4th ed.). England, UK: Oxford university Press.
  28. Magnani, L. (2009). Theoretical and manipulative abduction. In R. Dillmann, Y. Nakamura, S. Schaal, D. Vernon(Eds.), Abductive cognition (pp. 1-61). New York, NY: Springer.
  29. Magnani, L., Nercessian, N., & Thagard, P. (1999), Model-based reasoning in scientific discovery. Dordrecht, The Netherlands: Kluwer Academic/Plenum Publishers.
  30. Millar, R., & Driver, R. (1987). Beyond process. Studeis in Science Education, 14, 33-62. https://doi.org/10.1080/03057268708559938
  31. National Research Council(2012), A framework for K-12 science education: Practices, crosscutting concepts. and core ideas. Washington, DC: Natl. Acad. Press.
  32. Park, J. W. (2000). Analysis of students' processes of generating scientific explanatory hypothesis -Focused on the definition and the characteristics of scientific hypothesis. Journal of The Korean Association For Science Education, 20(4), 667-679.
  33. Park, J. W., Choi, K. H., & Kim, Y. M. (2001). Theory of physics education 1. Seoul: Bookshill.
  34. Park, B. H., Kim, H. K., & Lee, B. W. (2007). Analyses of the basic inquiry process in Korean 3-10 grade science textbooks: Focused on observation and measurement. Journal of The Korean Association For Science Education, 27(5), 421-431.
  35. Reichenbach, H. (1938). Experience and prediction: An analysis of the foundations and the structure of knowledge. Chicago, IL: University of Chicago Press.
  36. Oh, J. Y., Kim, S. S., & Kang, Y. H. (2008). A suggestion for a creative teaching-learning program for gifted science students using abductive inference strategies. Journal of The Korean Association For Science Education, 28(8), 786-795.
  37. Oh, P. S., & Kim, C. J. (2005). A theoretical study on abduction as an inquiry method in earth science. Journal of the Korean Association for Science Education, 25(5), 610-623.
  38. Oh, P. S., & Lee, J. S. (2014). Criteria for evaluating scientific models used by pre-service elementary teachers. Journal of The Korean Association For Science Education, 34(2), 135-146. https://doi.org/10.14697/jkase.2014.34.2.0135
  39. Osborne, J., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction?. Science Education, 95, 627-638. https://doi.org/10.1002/sce.20438
  40. Popper, K. (1958). The logic of scientific discovery. London and New York: Routledge.
  41. Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634-656. https://doi.org/10.1002/sce.20065
  42. Song, H. (2017). Logic training for leader. Seoul: Sapiens21.
  43. The Korean Society of Earth Science (2009). Earth science education. Paju: Kyoyookbook.
  44. Wilson, R. A., & Keil, F. (1998). The shadows and shallows of explanation. Minds and Machines, 8, 137-159. https://doi.org/10.1023/A:1008259020140
  45. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92, 941-967. https://doi.org/10.1002/sce.20259