Fig. 1. Coordinates for a curved beam
Fig. 2. Forces on a curved beam
Table 1. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of asymmetric curved beams with simply-simply supported ends and η=0.1
Table 2. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of asymmetric curved beams with simply-simply supported ends and η=0.4
Table 3. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of asymmetric curved beams with fixed-fixed ends and η=0.1
Table 4. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of asymmetric curved beams with fixed-fixed ends and η=0.4
Table 5. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of asymmetric curved beams with fixed-simply supported ends and η=0.1
Table 6. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of asymmetric curved beams with fixed-simply supported ends and η=0.4
Table 7. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of asymmetric curved beams with simply supported-fixed ends and η=0.1
Table 8. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of asymmetric curved beams with simply supported-fixed ends and η=0.4
Table 9. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane extensional vibration of uniform and non-uniform curved beams with fixed-fixed ends
Table 10. Fundamental frequency parameter, λ=(mr4ω2/EI0)1/2, for in-plane vibrations of curved beams with fixed-fixed ends
References
- R. Hoppe, "The Bending Vibration of a Circular Ring", Crelle's J. Math., Vol. 73, pp. 158-170, 1871.
- A. E. H. Love, "A Treatise of the Mathematical Theory of Elasticity", 4th ed, Dover, New York, 1944.
- H. Lamb, "On the Flexure and Vibrations of a Curved Bar", Proceedings of the London Mathematical Society , Vol. 19, pp. 365-376, 1888.
- J. P. Den Hartog, "The Lowest Natural Frequency of Circular Arc", Philosophical Magazine, Series 7, Vol. 5, pp. 400-408, 1928. https://doi.org/10.1080/14786440208564480
- E. Volterra, J. D. Morell, "Lowest Natural Frequency of Elastic Arc for Vibrations outside the Plane of Initial Curvature", J. Appl. Math., Vol. 28, pp. 624-627, 1961.
- R. R. Archer, "Small Vibration of Thin Incomplete Circular Ring", Int. J. Mech. Sci. , Vol 1, pp. 45-56, 1960. https://doi.org/10.1016/0020-7403(60)90029-1
- F. C. Nelson, "In-Plane Vibration of a Simply Supported Circular Ring Segment" Int. J. Mech. Sci., Vol. 4, pp. 517-527, 1962. https://doi.org/10.1016/S0020-7403(62)80013-7
- N. M. Auciello, M. A. De Rosa, "Free Vibrations of Circular Arche", J. Sound Vibr., Vol. 176, pp. 443-458, 1994.
- U. Ojalvo, "Coupled Twisting-Bending Vibrations of Incomplete Elastic Ring", Int. J. Mech. Sci., Vol. 4, pp. 53-72, 1962. https://doi.org/10.1016/0020-7403(62)90006-1
- L. C. Rodgers, W. H. Warner, "Dynamic Stability of Out-of-Plane Motion of Curved Elastic Rod", J. Appl. Math., Vol. 24, pp. 36-43, 1973.
- R. E. Bellman, J. Casti, "Differential Quadrature and Long-Term Integration", J. Math. Anal. Applic., Vol. 34, pp. 235-238, 1971. https://doi.org/10.1016/0022-247X(71)90110-7
- S. K. Jang, C. W. Bert, A. G. Striz, "Application of Differential Quadrature to Static Analysis of Structural Components", Int. J. Numer. Mech. Engng, Vol. 28, pp. 561-577, 1989. https://doi.org/10.1002/nme.1620280306
- K. Kang, Y. Kim, "In-Plane Vibration Analysis of Asymmetric Curved Beams Using DQM", J. KAIS., Vol. 11, pp. 2734-2740, 2010.
- K. Kang , C. Park, "In-Plane Buckling Analysis of Asymmetric Curved Beams Using DQM", J. KAIS., Vol. 141, pp. 4706-4712, 2013.
- K. Kang, C. Park, "Extensional Vibration Analysis of Curved Beams Including Rotatory Inertia and Shear Deformation Using DQM", J. KAIS., Vol. 17, pp. 284-293, 2016.