Fig. 1. Time schedules of application of microcurrent and behavioral tests in Alzheimer’s disease mice model.
Fig. 2. T-maze test. During the training session, the only one arm is opened that is specified by the experimenter. After 24 h, both arm are opened and the mouse is required to choose between two arms.
Fig. 3. Novel object recognition test. During the training session, two identical subjects are exist in the test box. After 24 h, one subject is changed and the mouse is required to choose between two different subjects.
Fig. 4. Morris water maze test. During the training session, the mouse finds hidden platform that is located in a large round pool of opaque water. In the test session, At the 4th day, tests are carried out.
Fig. 5. Effect of microcurrent on spatial alternation test in Aβ25-35-injected mice. Values are mean±SD. *The space perceptive abilities for old and new routes are significantly different as determined by Student’s t -test (P <0.05).
Fig. 6. Effect of microcurrent on novel object recognition test in Aβ25-35-injected mice. Values are mean±SD. *The perceptive abilities for familiar and novel object are significantly different as determined by Student’s t -test (P <0.05)
Fig. 7. Effect of microcurrent on spatial learning memory impairment in Morris water maze test in Aβ25-35-injected mice. Values are mean±SD.
Fig. 8. Effects of microcurrent on latency to reach the hidden (A) and exposed (B) platform in the Morris water maze test on the final test day in Aβ25-35-injected mice. Values are mean±SD. ##P <0.005 compared to normal group. NS: No significance.
Fig. 9. Effect of microcurrent on lipid peroxidation in Aβ25-35-injected mice. Values are mean±SD. ###P <0.001 compared to normal group; **P<0.01, ***P<0.001 compared to control group.
Fig. 10. Effect of microcurrent on the protein levels of BACE, PS1, and PS2 in the brain of Aβ25-35-injected mice. Values are mean±SD.D. ###P <0.001 compared to normal group; ***P <0.001 compared to control group.
Fig. 11. Effect of microcurrent on the protein levels of BDNF in the brain of Aβ25-35-injected mice. Values are mean±SD. ###P <0.001 compared to normal group; **P <0.01, ***P <0.001 compared to control group.
References
- M. Citron. "Alzheimer's disease: strategies for disease modification", Nature Reviews Drug Discovery , Vol.9, No.5, pp.387-398, 2010. DOI: https://doi.org/10.1038/nrd2896
- M. J. Cho. "The prevalence and risk factors of dementia in the Korean elderly", Health Welfare Policy Forum. Vol.156, pp.43-48, 2009.
- M. S. Parihar, T. Hemnani. "Alzheimer's disease pathogenesis and therapeutic interventions", Journal of Clinical Neuroscience, Vol.11, No.5, pp. 456-467, 2004. DOI: https://doi.org/10.1016/j.jocn.2003.12.007
- D. J. Selkoe, J. Hardy. "The amyloid hypothesis of Alzheimer's disease at 25 years", EMBO Molecular Medicine, Vol.8, No.6, pp.595-608, 2016. DOI: https://doi.org/10.15252/emmm.201606210
- K. J. Barnham, W. J. McKinstry, G. Multhaup, D. Galatis, C. J. Morton, C. C. Curtain, N. A. Williamson, A. R. White, M. G. Hinds, R. S. Norton, K. Beyreuther, C. L. Masters, M. W. Parker, R. Cappai. "Structure of the Alzheimer's disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis", Journal of Biological Chemistry, Vol.278, No.19, pp.17401-17407, 2009. DOI: https://doi.org/10.1074/jbc.M300629200
- G. F. Chen, T. H. Xu, Y. Yan, Y. R. Zhou, Y. Jiang, K. Melcher, H. E. Xu. "Amyloid beta: structure, biology and structure-based therapeutic development", Acta Pharmacologica Sinica, Vol.38, No.9, pp.1205-1235, 2017. DOI: https://doi.org/10.1038/aps.2017.28
- P. B. Watkins, H. J. Zimmerman, M. J. Knapp, S. I. Gracon, K. W. Lewis. "Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease.", Jama, Vol.271, No.13, pp. 992-998, 1994. DOI: https://doi.org/10.1001/jama.1994.03510370044030
- J. O. Go. "Effects of self-microcurrent massage on delayed onset muscle soreness (DOMS) and sit and reach: A preliminary study", Journal of Sport and Leisure Studies, Vol.73, pp.463-470, 2018. https://doi.org/10.51979/KSSLS.2018.08.73.463
- J. W. Jung "A study on the effect of microcurrent on pain relief" The Journal of Korean Society of Physical Therapy, Vol.12, No.2, pp.195-205, 1991.
- H. J. Oh, J. Y. Kim, R. J. Park. "The effects of microcurrent stimulation on recovery of function and pain in chronic low back pain", The Journal of the Korean Society of Physical Medicine, Vol.3 No.1, pp.47-56, 2008.
- M. I. Lambert, P. Marcus, T. Burgess, T. D. Noakes. "Electro-membrane microcurrent therapy reduces signs and symptoms of muscle damage", Medicine and Science in Sports and Exercise, Vol.34, No.4, pp.602-607, 2002. DOI: https://doi.org/10.1097/00005768-200204000-00007
- C. R. McMakin, W. M. Gregory, T. M. Phillips. "Cytokine changes with microcurrent treatment of fibromyalgia associated with cervical spine trauma", Journal of Bodywork and Movement Therapies, Vol.9, No.3, pp.169-176, 2005. DOI: https://doi.org/10.1016/j.jbmt.2004.12.003
- C. Yu, Z. Q. Hu, R. Y. Peng. "Effects and mechanisms of a microcurrent dressing on skin wound healing: a review", Military Medical Research, Vol.1, No.1, pp.24, 2014. DOI: https://doi.org/10.1186/2054-9369-1-24
- S. Yennurajalingam, D. H. Kang, W. J. Hwu, N. S. Padhye, C. Masino, S. S. Dibaj, D. D. Liu, J. L. Williams, Z. Lu, E. Bruera. "Cranial electrotherapy stimulation for the management of depression, anxiety, sleep disturbance, and pain in patients with advanced cancer: a preliminary study", Journal of pain and symptom management, Vol.55, No.2, pp.198-206, 2018. DOI: https://doi.org/10.1016/j.jpainsymman.2017.08.027
- A. Childs, M. L. Crismon. "The use of cranial electrotherapy stimulation in post-traumatic amnesia: a report of two cases", Brain Injury, Vol.2, No.3, pp.243-247, 1988. DOI: https://doi.org/10.3109/02699058809150948
- M. S. Cho. "The effect of microcurrent stimulation on expression of BMP-4 after tibia fracture in rabbits", The Journal of the Korea Contents Association. Vol.7, No.1, pp.1124-1129, 2009. DOI: https://doi.org/10.5392/JKCA.2010.10.3.196
- J. S. Kim, K. O. Min, "The effects of microcurrent stimulation on the astrocytes proliferation at injured brain of rabbit", Journal of Korean Physical Therapy Science, Vol.9, No.3, pp.107-119, 2002.
- S. U. Kim, J. S. Lee, S. S. Kim, H. D. Shin, S. H. Chung, "The effect of microcurrent electrical neuromuscular stimulation on stress-related hormones", Journal of Rehabilitation Medicine, Vol.13, No.4, pp.1-18, 2003.
- R. J. Park, J. S. Kim, I. H. Lee, J. H. Park, D. U. Han, "Effects of electrotherapy on blood velocity of vranial artery in tension - type headache subjects", The Journal of Korean Physical Therapy, Vol.12, No.2, pp.349-359, 2000.
- L. L. Baker,S. Rubayi, F. Villar, S. K. Demuth. "Effect of electrical stimulation waveform on healing of ulcers in human beings with spinal cord injury", Wound Repair and Regeneration, Vol.4, No.1, pp.21-28, 1996. DOI: https://doi.org/10.1046/j.1524-475X.1996.40106.x
-
H. G. Oh, J. H Kim, E. H. Shin, Y. R. Kang, B. G. Lee, S. H. Park, D. I. Moon, I. S. Kwon, Y. P. Kim, M. H. Choi, O. J. Kim, G. H. Park, H. Y. Lee. "Improving effects of platycodon extracts jelly on
${\beta}$ -amyloid-induced cytotoxicity and scopolamine-induced cognitive impairment animal models", Korean Journal of Plant Resources, Vol.26, No.4, pp.417-425, 2013. DOI: https://doi.org/10.7732/kjpr.2013.26.4.417 -
S. Y. Choi, J. Lee, D. G. Lee, S. Lee, E. J. Cho. ""Acer okamotoanum improves cognition and memory function in
$A{\beta}_{25-35}$ -induced Alzheimer's mice model", Applied Biological Chemistry, Vol.60, No.1, pp.1-9, 2017. DOI: https://doi.org/10.1007/s13765-016-0244-x - K. C. Montgomery. "A test of two explanations of spontaneous alternation", Journal of Comparative and Physiological Psychology, Vol.45, No.3, pp.287-293, 1952. DOI: http://dx.doi.org/10.1037/h0058118
- R. A. Bevins, J. Besheer. "Object recognition in rats and mice: a one-trial non-matching-to -sample learning task to study 'recognition memory'", Nature Protocols , Vol.1, No.3, pp.1306-1311, 2006. DOI: https://doi.org/10.1038/nprot.2006.205
- R. Morris. "Developments of a water-maze procedure for studying a spatial learning in the rat", Journal of Neuroscience Methods, Vol.11, No.1, pp.47-60, 1984. DOI: https://doi.org/10.1016/0165-0270(84)90007-4
- M Mihara, M Uchiyama. "Determination of malonaldehyde precursor in tissues by thiobarbituric acid test", Analytical Biochemistry, Vol.86, No.1, pp.271-278, 1978. DOI: https://doi.org/10.1016/0003-2697(78)90342-1
- L. Asth, B. Lobao-Soares, E. Andre, P. Soares Vde, E. C. Gavioli. "The elevated T-maze task as an animal model to simultaneously investigate the effects of drugs on long-term memory and anxiety in mice", Brain Research Bulletin, Vol.87, No.6, pp.526-533, 2012. DOI: https://doi.org/10.1016/j.brainresbull.2012.02.008
- D. J. Sanderson, D. M. Bannerman. "The role of habituation in hippocampus-dependent spatial working memory tasks: Evidence from GluA1 AMPA receptor subunit knockout mice", Hippocampus, Vol.22, No.5, pp.981-994, 2012. DOI: https://doi.org/10.1002/hipo.20896
- P. A. Dudchenko. "An overview of the tasks used to test working memory in rodents", Neuroscience and Biobehavioral Reviews, Vol.28, No.7, pp.699-709, 2004. DOI: https://doi.org/10.1016/j.neubiorev.2004.09.002
- I. M. Mansuy, M. Mayford, B. Jacob, E. R. Kandel, M. E. Bach. "Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory", Cell, Vol.92, No.1, pp.39-49, 1998. DOI: https://doi.org/10.1016/S0092-8674(00)80897-1
- N. J. Broadbent, L. R. Squire, R. E. Clark. "Spatial memory, recognition memory, and the hippocampus" Proceedings of the National Academy of Sciences, Vol.101, No.40, pp.14515-14520, 2004. DOI: https://doi.org/10.1073/pnas.0406344101
- D. M. Bannerman, R. Sprengle, D. J. Sanderson, S. B. McHugh, J, N. Rawlins, H. Monyer, P. H. Seeburg. "Hippocampal synaptic plasticity, spatial memory and anxiety", Nature Reviews Neuroscience, Vol.15, No.3, pp.181-192, 2014. DOI: https://doi.org/10.1038/nrn3677
- M. S. George, Z. Nahas, J. J. Borckardt, B. Anderson, M .J. Foust, C. Burns, E. B. Short "Brain stimulation for the treatment of psychiatric disorders", Current opinion in psychiatry, Vol.20, No.3, pp.250-254, 2007. DOI: https://doi.org/10.1097/YCO.0b013e3280ad4698
- J. D. Feusner, S. Madsen, T. D. Moody, C. Bohon, E. Hembacher, S. Y. Bookheimer, A. Bystritsky "Effects of cranial electrotherapy stimulation on resting state brain activity", Brain and behavior , Vol.2, No.3, pp.211-220, 2012. DOI: https://doi.org/10.1002/brb3.45
- R. B. Smith. "Microcurrent therapies: emerging theories of physiological information processing", NeuroRehabilitation, Vol.17, No.1, pp.3-7, 2002. https://doi.org/10.3233/NRE-2002-17102
- Y. H. Kwon, C. S. Kim, S. H. Jang. "Cortical activation in the human brain induced by transcranial direct current stimulation", The Journal of Korean Physical Therapy, Vol.21, No.4, pp.73-79, 2009.
- W. R. Markesbery, J. M. Carney. "Oxidative alterations in Alzheimer's disease", Brain Pathology, Vol.9, No.1, pp.133-146, 1999. DOI: https://doi.org/10.1111/j.1750-3639.1999.tb00215.x
- N. A. Avdulov, S. V. Chochina, U. Igbavboa, E. O. O'Hare, F. Schroeder, J. P. Cleary, W. G. Wood. "Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes", Journal of Neurochemistry, Vol.68, No.5, pp.2086-2091, 1997. DOI: https://doi.org/10.1046/j.1471-4159.1997.68052086.x
-
D. A. Butterfield, C. M. Lauderback. "Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid
${\beta}$ -peptide-associated free radical oxidative stress", Free Radical Biology and Medicine, Vol.32, pp.1050- 1060, 2002. DOI: https://doi.org/10.1016/S0891-5849(02)00794-3 - Y. Zhang, H. Xu. "Molecular and cellular mechanisms for Alzheimer's disease: understanding APP metabolism", Current Molecular Medicine, Vol.7, pp.687-696, 2007. DOI: https://doi.org/10.2174/156652407782564462
-
V. Echeverria, D. E. Berman, O. Arancio. "Oligomers of
${\beta}$ -amyloid peptide inhibit BDNF-induced Arc expression in cultured cortical neurons", Current Alzheimer Research, Vol.4, pp.518-521, 2007. DOI: https://doi.org/10.2174/156720507783018190 - I. Opris, V. P. Ferrera. "Modifying cognition and behavior with electrical microstimulation: implications for cognitive prostheses", Neuroscience and Biobehavioral Review, Vol.47, pp.321-35, 2014. DOI: https://doi.org/10.1016/j.neubiorev.2014.09.003
- I. Opris. "Electrical Stimulation for Modification of Memory and Cognition", Electroceuticals, pp. 283- 316, 2017. DOI: https://doi.org/10.1007/978-3-319-28612-9_12
- T. A. Ukhanova, F. E. Gorbunov. "Micro-current reflexotherapy in the rehabilitative treatment of the speech function disorders in children with cerebral palsy", Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury, Vol.1, pp.3-6, 2011.
- S. Liss, B. Liss. "Physiological and therapeutic effects of high frequency electrical pulses", Integrative Physiological and Behavioral Science, Vol.31, No.2, pp.88-95, 1996. DOI: https://doi.org/10.1007/BF02699781