DOI QR코드

DOI QR Code

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets

화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장

  • Kim, Jong-IL (Department of Advanced Chemical Engineering, Mokwon University) ;
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김종일 (목원대학교 신소재화학공학과) ;
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2019.02.04
  • Accepted : 2019.05.03
  • Published : 2019.05.31

Abstract

Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.

금속산화물/그래핀 복합체는 고감도 가스센서 및 고용량의 이차전지와 같은 첨단 응용 분야에 활용될 수 있는 유망한 기능성 소재로 알려져 있다. 본 연구에서는 이산화주석($SnO_2$) 나노구조물을 두 영역 전기로 장치를 이용하여 화학적으로 합성된 그래핀 나노시트 위에 성장시켰다. 대면적의 그래핀 나노시트는 Cu foil 위에 열화학기상증착 장비를 이용하여 메탄가스와 수소가스로 합성하였다. 화학적으로 합성된 그래핀 나노시트는 PMMA를 이용하여 세척된 Si 기판위에 전사시켰고, $SnO_2$ 나노구조물은 그래핀 나노시트 위에 $424^{\circ}C$, 3.1 Torr 조건에서 3시간동안 성장시켰다. 합성된 그래핀의 품질과 성장된 $SnO_2$ 나노구조물의 결정학적 특성을 Raman 분광학으로 확인하였다. 그래핀 위에서 성장된 $SnO_2$ 나노구조물의 표면형상은 전계방출 주사전자현미경으로 조사하였다. 그 결과 합성된 그래핀 나노시트는 이중층 그래핀이었고, 그래핀 위에서 성장된 산화주석은 $SnO_2$ 상을 가지고 있었다. 그래핀 위에서 성장된 $SnO_2$ 나노구조물은 복잡한 표면형상을 나타내었는데, 이것은 Si 기판 위에서 성장된 $SnO_2$ 나노구조물이 nano-dots 형태인 것과 비교된다. 그래핀 위에서 성장된 $SnO_2$ 나노구조물이 복잡한 형상을 갖는 것은 그래핀 표면의 기능기의 영향인 것으로 판단된다.

Keywords

SHGSCZ_2019_v20n5_81_f0001.png 이미지

Fig. 1. Schematic diagram of (a) synthesis of graphene nanosheets by thermal CVD system, (b) growth of tin dioxide nanostructures on graphene nanosheets by two-zone thermal CVD system, and (c) procedure of direct growth of SnO2 nanostructures on graphene nanosheets.

SHGSCZ_2019_v20n5_81_f0002.png 이미지

Fig. 4. FE-SEM images of as-grown SnO2 nanostructures on (a) ~ (c) chemically synthesized graphene nanosheets and (d) SiO2(300 nm)/Si substrate. The magnification is (a) 10,000x, (b) & (d) 100,000x and (c) 300,000x, respectively.

SHGSCZ_2019_v20n5_81_f0003.png 이미지

Fig. 2. (a) Raman spectrum, (b) and (c) Raman mapping images of as-synthesized graphene nanosheets before SnO2 growth. (b) Raman mapping image of I2D/IG peak and (c) Raman mapping image of ID peak.

SHGSCZ_2019_v20n5_81_f0004.png 이미지

Fig. 3. (a) Raman spectrum, (b) and (c) Raman mapping image of as-grown SnO2 nanostructures on graphene. (b) Raman mapping image of I2D/IG peak and (c) Raman mapping image of ID peak.

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp. 666-669, October, 2004. DOI:https://dx.doi.org/10.1126/science.1102896
  2. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, "Large scale pattern growth of graphene films for stretchable transparent electrodes", Nature, Vol. 457, pp. 706-710, February, 2009. DOI: https://dx.doi.org/10.1038/nature07719
  3. G. R. Yazdi, T. Iakimov, R. Yakimova, "Epitaxial Graphene On SiC : A Review of Growth and Characterization", Crystals, Vol. 6, pp. 53-97, May, 2016. DOI:https://dx.doi.org/10.3390/cryst6050053
  4. N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon, "Synthesis of graphene oxide using modified Hummers method : solvent influence", Procedia Engineering, Vol. 184, pp. 469-477, April, 2017. DOI:https://dx.doi.org/10.1016/j.proeng.2017.04.118
  5. X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, "A $SnO_{2}$/graphene composite as a high stability electrode for lithium ion batteries", Carbon, Vol. 49, pp. 133-139, September, 2011. DOI:https://dx.doi.org/10.1016/j.carbon.2010.08.052
  6. H. J. Park, Y. S. Chung, S. H. Lee, E. J. Lee, H. S. Ahn, S. H. Kim, D. J. Kim, "$SnO_{2}$/graphene oxide composites on VOC gas sensing properties", Journal of the Electrochemical Society, Vol. 164, No. 13, pp. B690-B694, October, 2017. DOI:https://dx.doi.org/10.1149/2.1381713jes
  7. Y. Xie, S. Yu, Y. Zhong, Q. Zhang, Q. Zhang, Y. Zhou, "$SnO_{2}$/graphene quantum dots composited photocatalyst for efficient nitric oxide oxidation under visible light", Applied Surface Science, Vol. 448, pp. 655-661, April, 2018. DOI:https://dx.doi.org/10.1016/j.apsusc.2018.04.145
  8. S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor", Sensors and Actuators B, Vol. 221, pp. 1170-1181, December, 2015. DOI:http://dx.doi.org/10.1080/22243682.2013.771917
  9. A. Debataraja. A. R. Muchtar, N. L. W. Septiani, B. Yuliarto, Nugraha, B. Sunendar, "High performance carbon monoxide sensor based on nano composite of $SnO_{2}$-graphene", IEEE Sensors Journal, Vol. 17, No. 24, pp. 8297-8305, December, 2017. DOI:https://dx.doi.org/10.1109/jsen.2017.2764088
  10. L. Li, A. Kovalchuk, J. M. Tour, "$SnO_{2}$-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability", Nano Research, Vol. 7, No. 9, pp. 1319-1326, May, 2014. DOI:https://dx.doi.org/10.1007/s12274-014-0496-x
  11. M. K. Singh, R. K. Pandey, R. Prakash, "High-performance photo detector based on hydrothermally grown $SnO_{2}$ nanowire/reduced graphene oxide (rGO) hybrid material", Organic Electronics, Vol. 50, pp. 359-366, August, 2017. DOI:https://dx.doi.org/10.1016/j.orgel.2017.08.016
  12. H. Na, J. H. Park, J. H. Hwang, J. B. Kim, "Site-specific growth and density control of carbon nanotubes by direct deposition of catalytic nanoparticles generated by spark discharge", Nanoscale Research Letters, Vol. 8, October, 2013. DOI:https://dx.doi.org/10.1186/1556-276X-8-409
  13. S. Y. Ma, X. H. Yang, X. L. Huang, A. M. Sun, H. S. Song, H. B. Zhu, "Effect of post-annealing treatment on the microstructure and optical properties of ZnO/PS nanocomposite films", Journal of Alloys and Compounds, Vol. 566, pp. 9-15, March, 2013. DOI:https://dx.doi.org/10.1016/j.jallcom.2013.02.179
  14. J-I. Kim, K-C. Kim, "The influence of oxygen gas flow rate on growth of tin dioxide nanostructures", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No.10, pp. 1-7, October, 2018. DOI:https://dx.doi.org/10.5762/KAIS.2018.19.10.1
  15. Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, J. Hou, "Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources", ACS Nano, Vol. 5, No. 4, pp. 3385-3390, March, 2015. DOI:https://dx.doi.org/10.1021/nn200854p
  16. S-A. Oh, K-C. Kim, "Growth of vanadium dioxide nanostructures on graphene nanosheets", Thin Solid Films, Vol. 676, pp. 151-156, 2019. DOI:https://dx.doi.org/10.1016/j.tsf.2019.01.014