DOI QR코드

DOI QR Code

Analysis on Displacement Characteristics of Slow-Moving Landslide on a slope near road Using the Topographic Map and Airborne LiDAR

수치지형도와 항공 LiDAR를 이용한 도로인접 사면 땅밀림 발생지 변위 특성 분석

  • Seo, Jun-Pyo (Division of Forest Disaster Management, National Institute of Forest Science) ;
  • Kim, Ki-Dae (Division of Forest Disaster Management, National Institute of Forest Science) ;
  • Woo, Choong-Shik (Division of Forest Disaster Management, National Institute of Forest Science)
  • 서준표 (국립산림과학원 산림방재연구과) ;
  • 김기대 (국립산림과학원 산림방재연구과) ;
  • 우충식 (국립산림과학원 산림방재연구과)
  • Received : 2019.02.25
  • Accepted : 2019.05.03
  • Published : 2019.05.31

Abstract

The purpose of this study is to analyze the displacement characteristics in slow-moving landslide area using digital elevation model and airborne LiDAR when unpredictable disaster such as slow-moving landslide occurred. We also aimed to provide basic data for establishing a rapid, reasonable and effective restoration plan. In this study, slow-moving landslide occurrence cracks were selected through the airborne LiDAR data, and the topographic changes and the scale of occurrence were quantitatively analyzed. As a result of the analysis, the study area showed horseshoe shape similar to the general form of slow-moving landslide occurrence in Korea, and the direction of movement was in the north direction. The total area of slow-moving landslide damage was estimated to about 2.5ha, length of landsldie scrap 327.3m, average width 19.3m, and average depth 8.6m. The slow-moving landslides did not occur on a large scale but occurred on the adjacent slope where roads were located, caused damage to retaining walls and roads. The field survey of slow-moving landslides was limited by accessibility and safety issues, but there was an advantage that accurate analysis was possible through the airborne LiDAR. However, because airborne LiDAR has costly disadvantages, it has proposed a technique to mount LiDAR on UAV for rapidity, long-term monitoring. In a slow-moving landslide damage area, information such as direction of movement of cracks and change of scale should be acquired continuously to be used in restoration planning and prevention of damage.

본 연구는 땅밀림과 같이 예측할 수 없는 재해가 발생했을 때 신속 합리 효과적인 복구계획 수립에 기초자료를 제공하고자 수치지형도와 항공 LiDAR 자료를 이용하여 땅밀림 발생지역에서 변위 특성을 분석하였다. 이를 위해 본 연구에서는 항공 LiDAR 자료를 통하여 땅밀림 발생지점을 탐지하고 지형변화와 발생규모를 정량적으로 분석하였다. 그 결과 본 연구대상지는 국내 땅밀림 발생의 일반적 형태인 말굽형태로 나타났고, 붕괴방향은 북쪽이었다. 땅밀림 발생의 전체 면적은 약 2.5ha, 활락애는 길이 약 327.3m, 평균 폭 19.3m, 평균 깊이 8.6m로 분석되었다. 땅밀림이 대규모로 발생한 것은 아니지만, 도로가 위치한 인접사면에서 발생하여 옹벽 도로가 파손되는 등 큰 피해가 발생하였다. 땅밀림 발생지의 현장조사는 접근성, 안전성 등의 문제로 제한사항이 있지만 항공 LiDAR를 통하여 정확한 분석이 가능한 장점이 있었다. 그러나 항공 LiDAR는 비용이 많이 드는 단점이 있기 때문에 신속 지속 장기적인 모니터링에는 무인기에 LiDAR를 탑재하는 기술을 개발하여 이를 활용하는 것이 효율적이다. 이러한 땅밀림 발생지에서는 땅밀림의 이동방향, 규모 변화와 같은 정보를 지속적으로 획득해서 복구계획 수립 및 피해를 예방하는데 있어 활용해야한다.

Keywords

SHGSCZ_2019_v20n5_27_f0001.png 이미지

Fig. 1. Photograph of the slow-moving landslide damaged area

SHGSCZ_2019_v20n5_27_f0002.png 이미지

Fig. 2. The airborne LiDAR equipment used in this study

SHGSCZ_2019_v20n5_27_f0003.png 이미지

Fig. 3. Aerial photographs (a) and topographic map (b) in 2016

SHGSCZ_2019_v20n5_27_f0004.png 이미지

Fig. 4. Aerial photographs (a) and digital elevation model by airborne LiDAR (b) in 2018

SHGSCZ_2019_v20n5_27_f0005.png 이미지

Fig. 5. Results of slow-moving landslide crack extraction at the study site

SHGSCZ_2019_v20n5_27_f0006.png 이미지

Fig. 6. Results of analysis on spatial variation using the DEM (a) before calibration (b) after calibration

SHGSCZ_2019_v20n5_27_f0007.png 이미지

Fig. 7. Location of each profile in main scarp and road

SHGSCZ_2019_v20n5_27_f0008.png 이미지

Fig. 8. Results of analysis on topography profile of MS_1-5 due to slow-moving landslide

SHGSCZ_2019_v20n5_27_f0009.png 이미지

Fig. 9. Results of analysis on topography profile of RS_1-3 due to slow-moving landslide

Table 2. Specification of the Lite Mapper 6800

SHGSCZ_2019_v20n5_27_t0001.png 이미지

Table 3. Occurrence scale of slow-moving landslides in this study

SHGSCZ_2019_v20n5_27_t0002.png 이미지

References

  1. G. O'Brien, P. O'Keefe, J. Rose, B. Wisner, "Climate change and disaster management", Disasters, Vol.30, No.1 pp. 64-80, March, 2006. DOI: https://doi.org/10.1111/j.1467-9523.2006.00307.x
  2. B. G. Chae, J. H. and Jeong, H. K, "A feasibility study of a rainfall triggering index model to warn landslides in Korea", The Journal of Engineering Geology, Vol.26, No.2 pp. 235-250, May, 2016. DOI: https://doi.org/10.9720/kseg.2016.2.235
  3. Korea Forest Service, "2013 Main Business Plan Details", Korea Forest Service, Republic of Korea, 2013.
  4. Korea Forest Service, "Soil Erosion Control Works Technology Textbook", pp. 432, Korea Forest Service, Republic of Korea, 2014.
  5. K. W. Chun, "Erosion Control Engineering", pp. 426, Hyangmoon Publisher, Republic of Korea, 2011.
  6. J. H. Park, K. Choi, J. S. Bae, H. S. Ma, J. H. Lee, "Analysis on the Characteristics of the Landslide in Maeri(I) -With a Special Reference on Geo-Topographical Characteristics-", Journal of Korean Forest Society, Vol.94, No.3 pp. 129-134, March, 2005.
  7. K. D. Kim, J. H. Park, C. W. Lee, M. J. Kang, "Crack Form and Soil Physical Properties in Land Creeping area on Okjong, Hadong", Journal of Korean Forest Society, Vol.105, No.4 pp. 435-440, November, 2016. DOI: https://doi.org/10.14578/jkfs.2016.105.4.435
  8. J. P. Seo, C. S. Woo, C. W. Lee, D. Y. Kim, "A Study on Detection and Monitoring in Land Creeping Area by using the UAV", Journal of the Korean Academia-Industrial cooperation Society, Vol.19, No.11 pp. 481-487, November, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.11.481
  9. B. M. Woo, J. H. Park, H. T. Choi, G. S. Jeon, K. H. Kim, "A Study on the Characteristics of the Landslide in Hyuseok-dong(I) -Topographical Characteristics and Surface Displacement-", Journal of Korean Forest Society, Vol.85, No.4 pp. 565-570, March, 1996.
  10. Korea Forest Service, "Implementation plan for landslide prevention in 2018", pp. 398, Korea Forest Service, Republic of Korea, 2018.
  11. R. Tadashi, "A Survey of the landslides", Journal of the Japan Society of Erosion Control Engineering, Vol.27, No.3 pp. 41-50, December, 1974. DOI: https://doi.org/10.11475/sabo1973.27.3_41
  12. K. Inoue, "Interpretation of landslide topography-How to read aerial photographs-", Journal of the Japan Society of Erosion Control Engineering, Vol.61, No.1 p. 61, May, 2008. DOI: https://doi.org/10.11475/sabo.61.1_61
  13. T. Sugimoto, T. Nozaki, H. Sakai, "Applicability of helicopter magnetic prospecting to the landslide area on the rim area of Toga-Graben", Journal of the Japan Society of Erosion Control Engineering, Vol.66, No.1 pp. 23-29, January, 2013. DOI: https://doi.org/10.11475/sabo.66.1_23
  14. C. S. Woo, H. J. Youn, C. W. Lee, K. S. Lee, "Estimation of Spatial Soil Distribution Changed by Debris Flow using Airborne Lidar Data and the Topography Restoration Method", Journal of Korean Forest Society, Vol.101, No.1 pp. 20-27, October, 2012.
  15. N. F. Glenn, D. R. Streutker, D. J. Chadwick, G. D. Thackray, S. J. Dorsch, "Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity", Geomorphology, Vol.73, No.2006 pp. 131-148, September, 2006. DOI: https://doi.org/10.1016/j.geomorph.2005.07.006
  16. M. V. D. Eechauk, J. Poesen, G. Verstraeten, V. Vanacker, J. Nyssen, J. Moeyersons, L. P. H. van Beek, L. Vandekerchove, "Use of LIDAR-derived images for mapping old landslides under forest", Earth Surface Processes and Landforms, Vol.32, pp.754-769. September, 2007. DOI: https://doi.org/10.1002/esp.1417
  17. S. Ghuffar, B. Szekely, A. Roncat, N. Pfeifer, "Landslide Displacement Monitoring Using 3D Range Flow on Airborne and Terrestrial LiDAR Data", Remote Sensing , Vol.2013, No.5 pp. 2720-2745, May, 2013. DOI: https://doi.org/10.3390/rs5062720
  18. R. F. Chen, C. W. Lin, Y. H. Chen, T. C. He, L. Y. Fei, "Detecting and Characterizing Active Thrust Fault and Deep-Seated Landslides in Dense Forest Areas of Southern Taiwan Using Airborne LiDAR DEM", Remote Sensing , Vol.2015, Np.7 pp. 15443-15466, November, 2015. DOI: https://doi.org/10.3390/rs71115443
  19. H. Choi, "Evaluation of the Optimum Interpolation for Creating Hydraulic Model from Close Range Digital Photogrammetry", Journal of the Korean society of surveying, geodesy, photogrammetry, and cartography, Vol.23, No.3 pp. 251-260, September, 2005.
  20. National Geographic Information Institute, National Geographic Information Platform, http://map.ngii.go.kr/, 2019. (Retrieved 2019.2.13.).
  21. C. S. Woo, "Development of the restoration method of topography for debris flow area using airborne Lidar data", pp. 122, Inha University, Ph.D. Dissertation, 2011.
  22. Korea Forest Professional Engineer Association, "Soil erosion control works related glossary", pp. 491, Korea Forest Professional Engineer Association, Republic of Korea, 2011.
  23. J. H. Park, S. G. Park, "Analysis of Instances of Characteristics Land Creep on the Mine Area in Korea", Journal of Korean Society of Forest Science, Vol.107, No.4 pp. 393-401, November, 2018. DOI: https://doi.org/10.14578/jkfs.2018.107.4.393
  24. J. H. Park, C. W. Lee, M. J. Kang, K. D. Kim, "Analysis of Characteristics of Forest Environmental Factors on Land Creeping Occurrence", Journal of Agriculture & Life Science , Vol.49, No.5 pp. 133-144, October, 2015. DOI: http://dx.doi.org/10.14397/jals.2015.49.5.133