DOI QR코드

DOI QR Code

Comparison of Mesoscale Eddy Detection from Satellite Altimeter Data and Ocean Color Data in the East Sea

인공위성 고도계 자료와 해색 위성 자료 기반의 동해 중규모 소용돌이 탐지 비교

  • PARK, JI-EUN (Department of Science Education, Seoul National University) ;
  • PARK, KYUNG-AE (Department of Earth Science Education / Research Institute of Oceanography, Seoul National University)
  • 박지은 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과 / 해양연구소)
  • Received : 2019.04.02
  • Accepted : 2019.05.30
  • Published : 2019.05.31

Abstract

Detection of mesoscale oceanic eddies using satellite data can utilize various ocean parameters such as sea surface temperature (SST), chlorophyll-a pigment concentration in phytoplankton, and sea level altimetry measurements. Observation methods vary for each satellite dataset, as it is obtained using different temporal and spatial resolution, and optimized data processing. Different detection results can be derived for the same oceanic eddies; therefore, fundamental research on eddy detection using satellite data is required. In this study, we used ocean color satellite data, sea level altimetry data, and infrared SST data to detect mesoscale eddies in the East Sea and compared results from different detection methods. The sea surface current field derived from the consecutive ocean color chlorophyll-a concentration images using the maximum cross correlation coefficient and the geostrophic current field obtained from the sea level altimetry data were used to detect the mesoscale eddies in the East Sea. In order to compare the eddy detection from satellite data, the results were divided into three cases as follows: 1) the eddy was detected in both the ocean color and altimeter images simultaneously; 2) the eddy was detected from ocean color and SST images, but no eddy was detected in the altimeter data; 3) the eddy was not detected in ocean color image, while the altimeter data detected the eddy. Through these three cases, we described the difficulties with satellite altimetry data and the limitations of ocean color and infrared SST data for eddy detection. It was also emphasized that study on eddy detection and related research required an in-depth understanding of the mesoscale oceanic phenomenon and the principles of satellite observation.

인공위성 자료를 활용한 중규모 소용돌이 탐지에는 해수면온도, 식물플랑크톤 클로로필-a 색소 농도, 해수면고도 등 다양한 해양 변수를 활용할 수 있다. 각 위성 해양 자료는 시 공간 해상도, 관측 방식 및 자료 처리 과정이 상이하기 때문에, 동일한 소용돌이에 대해서도 다른 탐지 결과를 유도할 수 있어, 인공위성 자료를 활용한 소용돌이 탐지에 대한 기초 연구가 필요하다. 본 연구에서는 해색 위성 자료, 위성 고도계 해수면고도 자료, 적외선 해수면온도 자료를 활용하여 동해 중규모 소용돌이를 탐지하고 그 결과를 상호 비교하였다. 연속된 해색 위성 클로로필-a 농도 영상으로부터 최대 상호 상관 계수를 통하여 산출한 표층 해류장과, 위성 고도계의 해수면고도 영상 자료로부터 산출한 지형류를 활용하여 동해 중규모 소용돌이를 탐지하였다. 소용돌이 탐지 결과를 상호 비교하기 위하여 1) 해색 영상과 고도계 영상이 동시에 소용돌이를 탐지한 경우, 2) 해색 영상과 해수면온도 영상에는 존재하나 고도계 자료는 탐지하지 못한 경우, 3) 해색 영상과 해수면온도 영상에는 소용돌이가 존재하지 않으나 고도계 자료에서는 존재하는 경우 등 세 가지 사례를 선택하였다. 이와 같은 세 가지 사례를 통하여 동해 중규모 소용돌이 탐지 시 인공위성 고도계 자료의 문제점 제기와 더불어, 해색 위성 자료와 적외선 해수면온도 자료의 한계점을 제시하였다. 또한 해양 현상과 인공위성 관측 원리에 대한 깊이 있는 이해를 기반으로 소용돌이 탐지 및 관련 연구가 진행되어야 함을 강조하였다.

Keywords

GHOHBG_2019_v24n2_282_f0001.png 이미지

Fig. 1. Schematic currents in the seas around Korea including the East Sea, where the background image is an RGB composite from GOCI data.

GHOHBG_2019_v24n2_282_f0002.png 이미지

Fig. 2. Sea surface temperature distribution from NOAA-18/AVHRR on 5 April 2011 in the East Sea.

GHOHBG_2019_v24n2_282_f0003.png 이미지

Fig. 3. Spatial distribution of (a) chlorophyll-a concentration (mg m-3) from GOCI data and (b) satellite altimeter sea surface height anomaly (m) in the East Sea on 5 April 2011, where the red boxes represent the cases for the study of eddies.

GHOHBG_2019_v24n2_282_f0004.png 이미지

Fig. 4. Spatial distribution of chlorophyll-a concentration from GOCI data at (a) 9:30 a.m. and (b) 11:30 a.m. on April 5, 2011, and (c) surface current field derived from (a) and (b) by using maximum cross correlation method.

GHOHBG_2019_v24n2_282_f0005.png 이미지

Fig. 5. Spatial distribution of surface current vectors from satellite altimeter data in the East Sea on April 5, 2011, where the background image represent the sea surface height anomaly data.

GHOHBG_2019_v24n2_282_f0006.png 이미지

Fig. 6. Distribution of locations of warm and cold eddies over an sea surface height anomaly image as marked in red and black dots, respectively.

GHOHBG_2019_v24n2_282_f0008.png 이미지

Fig. 9. Spatial distribution of sea surface temperatures (℃) from NOAA-18/AVHRR on 5 April, 2011 in the area of the Case 2.

GHOHBG_2019_v24n2_282_f0010.png 이미지

Fig. 7. (a) Daily-averaged current vectors estimated by a maximum cross correlation method from the GOCI chlorophyll-a concentration images and (b) geostrophic current vectors estimated using sea surface height anomaly from satellite altimeter for the Case 1.

GHOHBG_2019_v24n2_282_f0011.png 이미지

Fig. 8. (a) Daily-averaged current vectors estimated by a maximum cross correlation method from the GOCI chlorophyll-a concentration images and (b) geostrophic current vectors estimated using sea surface height anomaly from satellite altimeter for the Case 2.

GHOHBG_2019_v24n2_282_f0012.png 이미지

Fig. 10. (a) Daily-averaged current vectors estimated by a maximum cross correlation method from the GOCI chlorophyll-a concentration images and (b) geostrophic current vectors estimated using sea surface height anomaly from satellite altimeter for the Case 3.

References

  1. Bowen, M.M., W.J. Emery, J.L. Wilkin, P.C. Tildesley, I.J. Barton and R. Knewtson, 2002. Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique. J. Atmos. Ocean. Technol., 19: 1665-1676. https://doi.org/10.1175/1520-0426(2002)019<1665:EMSCFS>2.0.CO;2
  2. Bryan, K., 1996. The role of mesoscale eddies in the poleward transport of heat by the oceans: a review. Physica D, 98: 249-257. https://doi.org/10.1016/0167-2789(96)00119-4
  3. Chae, H.-J. and K.-A. Park, 2009. Characteristics of speckle errors of SeaWiFS chlorophyll-${\alpha}$ concentration in the East Sea. J. Korean Earth Sci. Soc., 30: 234-246. https://doi.org/10.5467/JKESS.2009.30.2.234
  4. Chaigneau, A., A. Gizolme and C. Grados, 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79: 106-119. https://doi.org/10.1016/j.pocean.2008.10.013
  5. Chaigneau, A., G., Eldin and B. Deqitte, 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007). Prog. Oceanogr., 83: 117-123. https://doi.org/10.1016/j.pocean.2009.07.012
  6. Chaigneau, A., M. Le Texier, G. Eldin, C. Grados and O. Pizarro, 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res.: Oceans, 116: C11.
  7. Chelton, D.B., M.G. Schlax, R.M. Samelson and R.A. de Szoeke, 2007. Global observations of large oceanic eddies. Geophys. Res. Lett., 34: L15606, 10.1029/2007GL030812.
  8. Chelton, D.B., M.G. Schlax and R.M. Samelson, 2011a. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91: 167-216. https://doi.org/10.1016/j.pocean.2011.01.002
  9. Chelton, D.B., P. Gaube, M.G. Schlax, J.J. Early and R.M. Samelson, 2011b. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334: 328-332. https://doi.org/10.1126/science.1208897
  10. Cornillon, P. and K.-A. Park, 2001. Warm Core Ring Velocities Inferred from NSCAT Data. Geophys. Res. Lett., 28: 575-578. doi:10.1029/2000GL011487.
  11. Cornillon, P.C., R. Weyer and G. Flierl, 1989. Translational velocity of warm core rings relative to the slope water. J. Phys. Oceanogr., 19: 1317-1332. https://doi.org/10.1175/1520-0485(1989)019<1317:TVOWCR>2.0.CO;2
  12. Dewar, W.K. and G.R. Flierl, 1987. Some effects of the wind on rings. J. Phys. Oceanogr., 17: 1653-1667. https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2
  13. Emery, W.J., A.C. Thomas, M.J. Collins, W.R. Crawford and D.L. Mackas, 1986. An Objective Method for Computing Advective Surface Velocities from Sequential Infrared Satellite Images. J. Geophys. Res., 91: 12865-12878. doi:101029/JC091iC11p12865. https://doi.org/10.1029/JC091iC11p12865
  14. Evans, R.H., K.S. Baker, O.B. Brown and R.C. Smith, 1985. Chronology of warm-core ring 82B. J. Geophys. Res., 90: 8803-8812. https://doi.org/10.1029/JC090iC05p08803
  15. Gower, J.F.R., K.L. Denman and R.J. Holyer, 1980. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structures. Nature, 288: 157-159. https://doi.org/10.1038/288157a0
  16. Henson, S.A. and A.C. Thomas, 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Res. Part I: Oceanogr. Res. Pap., 55: 163-176. https://doi.org/10.1016/j.dsr.2007.11.005
  17. Hooker, S.B. and J.W. Brown, 1994. Warm core ring dynamics derived from satellite imagery. J. Geophys. Res., 99: 25181-25194. https://doi.org/10.1029/94JC02171
  18. Ichiye, T., 1984. Some problems of circulation and hydrography of the Japan Sea and the Tsushima Current. p. 15-54. In: T. Ichiye (ed.). Ocean Hydrodynamics of the Japan and East China Seas. Vol. 39: Elsevier Oceanography Series. Elsevier, Amsterdam.
  19. Isern-Fontanet, J., E. Garcia-Ladona and J. Font, 2003. Identification of marine eddies from altimetric maps. J. Atmos. Ocean. Technol., 20: 772-778. https://doi.org/10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2
  20. Isern-Fontanet, J., E. Garcia-Ladona and J. Font, 2006. Vortices of the Mediterranean Sea: an altimetric perspective. J. Phys. Oceanogr., 36: 87-103. https://doi.org/10.1175/JPO2826.1
  21. Isoda, Y. and S.I. Saitoh, 1993. The northward intruding eddy along the east coast of Korea. J. Oceanogr., 49: 443-458. https://doi.org/10.1007/BF02234959
  22. Jayne, S.R. and J. Marotzke, 2002. The oceanic eddy heat transport. J. Phys. Oceanogr., 32: 3328-3345. https://doi.org/10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2
  23. Kang, S.K., J.Y. Cherniawsky, M.G.G. Foreman, J.-K. So and S.R. Lee, 2008. Spatial variability in annual sea level variations around the Korean peninsula. Geophys. Res. Lett., 35: L03603. doi:10.1029/2007GL032527.
  24. Kelly, K.A., 1989. An inverse model for near-surface velocity from infrared images. J. Phys. Oceanogr., 19: 1845-1864. https://doi.org/10.1175/1520-0485(1989)019<1845:AIMFNS>2.0.CO;2
  25. Kim, K., K.R. Kim, D.H. Min, Y. Volkov, J.H. Yoon and M. Takematsu, 2001. Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans?. Geophys. Res. Lett., 28: 3293-3296. https://doi.org/10.1029/2001GL013078
  26. Lai, D.V. and P.L. Richardson, 1977. Distribution and movement of Gulf Stream rings. J. Phys. Oceanogr., 7: 670-683. https://doi.org/10.1175/1520-0485(1977)007<0670:DAMOGS>2.0.CO;2
  27. Lee, D.K. and P. Niiler, 2010. Eddies in the southwestern East/Japan Sea. Deep Sea Res. Part I: Oceanogr. Res. Pap., 57: 1233-1242. https://doi.org/10.1016/j.dsr.2010.06.002
  28. Lee, K.J., 2013. Mesoscale eddies in the East/Japan Sea derived from low-resolution gridded altimeter data: Detection algorithms and characteristics of statistical eddy properties, Doctoral thesis, Seoul National University.
  29. Mason, E., A. Pascual and J.C. McWilliams, 2014. A new sea surface height-based code for oceanic mesoscale eddy tracking. McWilliams, 31: 1181-1188.
  30. Mitchell, D.A., D.R. Watts, M. Wimbush, W.J. Teague, K.L. Tracey, J.W. Book, K.-I. Chang, M.-S. Suk and J.H. Yoon, 2005. Upper circulation patterns in the Ulleung Basin. Deep Sea Res. Part II: Top. Stud. Oceanogr., 52: 1617-1638. https://doi.org/10.1016/j.dsr2.2003.09.005
  31. Nencioli, F., C. Dong, T. Dickey, L. Washburn and J.C. McWilliams, 2010. A vector geometry-based eddy detection algorithm and its application to a high resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27: 564-579. https://doi.org/10.1175/2009JTECHO725.1
  32. Nof, D., 1983. On the migration of isolated eddies with applications to Gulf Stream rings. J. Mar. Res., 41: 399-425. https://doi.org/10.1357/002224083788519687
  33. Okubo, A., 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularity such as convergences. Deep Sea Res., 17: 445-454.
  34. Park, J.-E., K.-A. Park, D.S. Ullman, P.C. Cornillon and Y.-J. Park, 2016. Observation of diurnal variations in mesoscale eddy sea-surface currents using GOCI data, Remote Sensing Letters, 7: 1131-1140. DOI: 10.1080/2150704X.2016.1219423.
  35. Park, K.-A. and J.Y. Chung, 1999. Spatial and temporal scale variations of sea surface temperature in the East Sea using NOAA/AVHRR data. J. Oceanogr., 55: 271-288. https://doi.org/10.1023/A:1007872709494
  36. Park, K.-A., D.S. Ullman, K. Kim, J.Y. Chung and K.R. Kim, 2007. Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea. Deep Sea Res. Part I: Oceanogr. Res. Pap., 54: 453-470. https://doi.org/10.1016/j.dsr.2006.12.010
  37. Park, K.-A., H.J. Woo and J.H. Ryu, 2012. Spatial scales of mesoscale eddies from GOCI Chlorophyll-a concentration images in the East/Japan Sea. Ocean Sci. J., 47: 347-358. https://doi.org/10.1007/s12601-012-0033-3
  38. Park, K.-A., J.Y. Chung and K. Kim, 2004. Sea surface temperature fronts in the East (Japan) Sea and temporal variations. Geophys. Res. Lett., 31(7), doi.org/10.1029/2004GL019424.
  39. Park, K.-A., M.S. Lee, J.E. Park, D. Ullman, P.C. Cornillon and Y.J. Park, 2018. Surface currents from hourly variations of suspended particulate matter from Geostationary Ocean Color Imager data. Int. J. Remote Sens., 39: 1929-1949. https://doi.org/10.1080/01431161.2017.1416699
  40. Park, K.-A., P. Cornillon and D.L. Codiga, 2006. Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111: C03021. doi:10.1029/2005JC003016.
  41. Qiu, B. and S. Chen, 2005. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI and altimetry measurements. J. Phys. Oceanogr., 35: 458-473. https://doi.org/10.1175/JPO2696.1
  42. Richardson, P.L., 1980. Gulf Stream ring trajectories. J. Phys. Oceanogr., 10: 90-104. https://doi.org/10.1175/1520-0485(1980)010<0090:GSRT>2.0.CO;2
  43. Roemmich, D. and J. Gilson, 2001. Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability? J. Physical Oceanogr., 31: 675-687. https://doi.org/10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2
  44. Sadarjoen, I.A. and F.H. Post, 1999. Geometric methods for vortex extraction. In Data Visualization (pp. 53-62). Springer, Vienna.
  45. Sadarjoen, I.A. and F.H. Post, 2000. Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graphics, 24: 333-341. https://doi.org/10.1016/S0097-8493(00)00029-7
  46. Schmitt, R.W. and D.B. Olson, 1985. Wintertime convection in warmcore rings: Thermocline ventilation and the formation of mesoscale lenses. J. Geophys. Res., 90: 8823-8837. https://doi.org/10.1029/JC090iC05p08823
  47. Shin, H.R., C.W. Shin, C. Kim, S.K. Byun and S.C. Hwang, 2005. Movement and structural variation of warm eddy WE92 for three years in the western East/Japan Sea. Deep Sea Res. Part II Top. Stud. Oceanogr., 52: 1742-1762. https://doi.org/10.1016/j.dsr2.2004.10.004
  48. Tokmakian, R., P.T. Strub, and J. McClean-Padman, 1990. "Evaluation of the maximum cross-correlation method of estimating sea surface velocities from sequential satellite images. J. Atmos. Ocean. Technol., 7: 852-865. https://doi.org/10.1175/1520-0426(1990)007<0852:EOTMCC>2.0.CO;2
  49. Toner, M., Jr A.D. Kirwan, A.C. Poje, L.H. Kantha, F.E. Mller-Karger and C.K.R.T. Jones, 2003. Chlorophyll dispersal by eddy-eddy interactions in the Gulf of Mexico. J. Geophys. Res., 108: 3105. doi:10.1029/2002JC001499.
  50. Traon, P.Y. Le, F. Nadal and N. Ducet, 1998. An improved mapping method of multisatellite altimeter data. J. Atmos. Ocean. Technol., 15: 522-534. https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2
  51. Ubelmann, C., P. Klein and L.L. Fu, 2015. Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping. J. Atmos. Ocean. Technol., 32: 177-184. https://doi.org/10.1175/JTECH-D-14-00152.1
  52. Waugh, D.W., E.R. Abraham and M.M. Bowen. 2006. Spatial variations of stirring in the surface ocean: a case study of the Tasman Sea. J. Physical Oceanogr., 36: 526-542. https://doi.org/10.1175/JPO2865.1
  53. Weiss, J., 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48: 273-294 https://doi.org/10.1016/0167-2789(91)90088-Q
  54. Wunsch, C., 1999. Where do ocean eddy heat fluxes matter? J. Geophys. Res.: Oceans, 104: 13235-13249. https://doi.org/10.1029/1999JC900062
  55. Yoon, S.T., K.I. Chang, S. Nam, T. Rho, D.J. Kang, T. Lee, K.-A. Park, V. Lobanov, D. Kaplunenko, P. Tishchenko and K.R. Kim, 2018. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific reports, 8: 1576. https://doi.org/10.1038/s41598-018-19952-4
  56. Zavialov, P.O., J.V. Grigorieva, O.O. Mller, Jr. A.G. Kostianoy and M. Gregoire, 2002. Continuity preserving modified maximum cross-correlation technique. J. Geophys. Res., 107: 3160. doi:10.1029/2001JC001116.