DOI QR코드

DOI QR Code

Statistical Characteristics of East Sea Mesoscale Eddies Detected, Tracked, and Grouped Using Satellite Altimeter Data from 1993 to 2017

인공위성 고도계 자료(1993-2017년)를 이용하여 탐지‧추적‧분류한 동해 중규모 소용돌이의 통계적 특성

  • LEE, KYUNGJAE (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • NAM, SUNGHYUN (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • KIM, YOUNG-GYU (Agency for Defense Development)
  • 이경재 (서울대학교 지구환경과학부) ;
  • 남성현 (서울대학교 지구환경과학부) ;
  • 김영규 (국방과학연구소)
  • Received : 2019.02.28
  • Accepted : 2019.04.28
  • Published : 2019.05.31

Abstract

Energetic mesoscale eddies in the East Sea (ES) associated with strong mesoscale variability impacting circulation and environments were statistically characterized by analyzing satellite altimeter data collected during 1993-2017 and in-situ data obtained from four cruises conducted between 2015 and 2017. A total of 1,008 mesoscale eddies were detected, tracked, and identified and then classified into 27 groups characterized by mean lifetime (L, day), amplitude (H, m), radius (R, km), intensity per unit area (EI, $cm^2/s^2/km^2$), ellipticity (e), eddy kinetic energy (EKE, TJ), available potential energy (APE, TJ), and direction of movement. The center, boundary, and amplitude of mesoscale eddies identified from satellite altimeter data were compared to those from the in-situ observational data for the four cases, yielding uncertainties in the center position of 2-10 km, boundary position of 10-20 km, and amplitude of 0.6-5.9 cm. The mean L, H, R, EI, e, EKE, and APE of the ES mesoscale eddies during the total period are $95{\pm}104$ days, $3.5{\pm}1.5cm$, $39{\pm}6km$, $0.023{\pm}0.017cm^2/s^2/km^2$, $0.72{\pm}0.07$, $23{\pm}21TJ$, and $588{\pm}250TJ$, respectively. The ES mesoscale eddies tend to move following the mean surface current rather than propagating westward. The southern groups (south of the subpolar front) have a longer L, larger H, R, and higher EKE, APE; and stronger EI than those of the northern groups and tend to move a longer distance following surface currents. There are exceptions to the average characteristics, such as the quasi-stationary groups (the Wonsan Warm, Wonsan Cold, Western Japan Basin Warm, and Northern Subpolar Frontal Cold Eddy groups) and short-lived groups with a relatively larger H, higher EKE, and APE and stronger EI (the Yamato Coastal Warm, Central Yamato Warm, and Eastern Japan Basin Coastal Warm eddy groups). Small eddies in the northern ES hardly resolved using the satellite altimetry data only, were not identified here and discussed with potential over-estimations of the mean L, H, R, EI, EKE, and APE. This study suggests that the ES mesoscale eddies 1) include newly identified groups such as the Hokkaido and the Yamato Rise Warm Eddies in addition to relatively well-known groups (e.g., the Ulleung Warm and the Dok Cold Eddies); 2) have a shorter L; smaller H, R, and lower EKE; and stronger EI and higher APE than those of the global ocean, and move following surface currents rather than propagating westward; and 3) show large spatial inhomogeneity among groups.

활발한 중규모 변동성으로 인해 해양 환경과 순환의 극심한 변화를 초래하는 동해 전역에서 장기간(1993-2017년) 수집된 인공위성 고도계 자료와 2015-2017년 기간의 4차례 승선 조사로 수집된 현장 관측 자료를 분석하여 중규모 소용돌이의 통계적 특성을 규명하였다. 동해 전역에서 해당 기간 동안 총 1,008개의 중규모 소용돌이를 탐지 추적 정의하고, 이를 27개의 그룹으로 분류하여, 전체 평균 및 각 그룹별 평균 지속기간(L, 일), 진폭(H, m), 반경(R, km), 단위 면적당 강도(EI, $cm^2/s^2/km^2$), 타원율(e), 운동에너지(EKE, TJ), 가용위치에너지(APE, TJ) 및 전파 방향을 산출하였다. 인공위성 고도계 자료로부터 산출된 소용돌이의 중심, 경계, H 각각을 현장 관측 자료로부터 산출된 해당 수치와 비교하여 각각에 대한 불확실성을 중심 오차 2-10 km, 경계 오차 10-20 km, 진폭 오차 0.6-5.9 cm로 추정하였다. 정의된 모든 소용돌이들의 전기간 평균 L, H, R, EI, e, EKE, APE는 각각 $95{\pm}104$일, $3.5{\pm}1.5cm$, $39{\pm}6km$, $0.023{\pm}0.017cm^2/s^2/km^2$, $0.72{\pm}0.07$, $23{\pm}21TJ$, $588{\pm}250TJ$로서 대양에 비해 전반적으로 L이 짧고, H, R은 작으며, EI는 강하고, EKE는 낮게, APE는 높게 나타났다. 또, 대양에서와 같은 뚜렷한 서향 전파 특성을 보이지 않고, 대체로 해류를 따라 이동하는 특성을 보였다. 아극전선(subpolar front)을 기준으로 남부 소용돌이 그룹의 L, H, R, EI, EKE, APE가 북부 그룹에 비해 더 길고, 크고, 강하며, 높고, 평균 해류 방향으로 더 멀리 이동하는 특성을 보였다. 뿐만 아니라 특정 방향으로의 이동이 뚜렷하지 않은 4개 그룹들(Wonsan Warm Eddy, Wonsan Cold Eddy, Western Japan Basin Warm Eddy, Northern Subpolar Frontal Cold Eddy groups)과 상대적으로 크고, 강하며, 높은 H, EI, EKE, APE에도 불구하고 오래 지속되지 않는(짧은 L) 특성을 보이는 3개 그룹들(Yamato Coastal Warm Eddy, Central Yamato Warm Eddy, Eastern Japan Basin Coastal Warm Eddy groups)도 제시하였다. 인공위성 고도계만으로는 잘 탐지되기 어려운 작은 규모의 소용돌이가 존재하는 동해 북부 해역에서는 소용돌이 그룹이 정의되지 않았으며, 본 연구에서 제시된 동해 평균 소용돌이 특성치의 과대추정 가능성이 토의되었다. 본 연구를 통해 1) 기존에 비교적 잘 알려진 울릉 난수성 소용돌이(Ulleung Warm Eddy)와 독냉수성 소용돌이(Dok Cold Eddy) 그룹 외에도 Hokkaido Warm Eddy, Yamato Rise Warm Eddy와 같은 그룹들을 새로 정의하였고, 2) 대양의 중규모 소용돌이에 비해 전반적으로 그 L이 짧고, H, R은 작고, EKE는 낮으나, EI는 강하고, APE는 높으며, 서향 전파가 뚜렷하지 않은 동해의 중규모 소용돌이 특성을 규명했으며, 3) 동해 내에 그룹별로 상이한 중규모 소용돌이 그룹의 특성을 제시하였다.

Keywords

GHOHBG_2019_v24n2_267_f0001.png 이미지

Fig. 1. Schematics on near-surface circulation superimposed with bottom topography in the East Sea (Park et al., 2013). Here, rectangles, triangles, pentagrams and circles denote CTD stations for cruises conducted in Jun. 2015, Nov. 2015, Apr. 2016 and May 2017, respectively. The red and blue arrows represent the schematic paths of the warm and cold currents. The abbreviations are JB: Japan Basin, SPF: Subpolar Front, YR: Yamato Rise, YB: Yamato Basin, UB: Ulleung Basing (UB), UI: Ulleung Island (UI), and DI: Dok Island.

GHOHBG_2019_v24n2_267_f0002.png 이미지

Fig. 4. Areas (red and blue shaded) and movements (arrows) of (a) 16 anticyclonic and (b) 11 cyclonic eddy groups, defined based on (c) trajectories and (d) activation locations of 1,008 eddies in total. Numbers labeled in each area are the same as in Tables 3 and 4. In (a) and (b), locations of individual eddy formation and areas of corresponding eddy groups are shown with dots and shades. The vector arrows in (a) and (b) denote mean direction and distance of eddy movement over the lifetime. In (a)-(d), the anticyclonic and cyclonic eddies are shown in red and blue, respectively.

GHOHBG_2019_v24n2_267_f0003.png 이미지

Fig. 2. (a-d) ADT in cm derieved from Satellite Altimetry (SA, red) and CTD measurements (blue) along the in-situ observational lines, and cross-sectional structures of (e-h) water temperature (white contours, and the white thick lines denotes bottom of thermostad in each period) and APE in J m-3 (color), and (i-l) geostrophic current in m s-1 across the observation lines for (a, e, i) Jun. 2015, (b, f, j) Nov. 2015, (c, g, k) Apr. 2016, and (d, h, l) May 2017. Here, the eddy centers and eddy boundaries at the observational lines are denoted by the solid and dashed vertical lines, respectively. The CTD stations are marked in (e-l) with red vertical lines. Contour intervals in (e-h) and (i-l) are 1 °C and 0.1 m/s, respectively.

GHOHBG_2019_v24n2_267_f0004.png 이미지

Fig. 3. (a, b) Rose diagrams and (c, d) all lifetime trajectories of (a, c) anticyclonic and (b, d) cyclonic eddies. The length of each fan radius in rose diagrams means the number of eddies propagating to corresponding direction. In (a) and (b), the ratio of eddies propagating to each quadrant is shown in percentage. In (c) and (d), the origin corresponds to the location of eddy formation.

Table 1. Amplitude H (cm) and APE (TJ) of anticyclonic eddies observed at Ulleung Basin in Jun. 2015, Nov. 2015, Apr. 2016, and May 2017

GHOHBG_2019_v24n2_267_t0001.png 이미지

Table 2. Mean life time (L, day), amplitude (H, cm), radius (R, km), intensity (EI, cm2/s2/km2) , ellipticity (e), APE (TJ), EKE (TJ), propagation direction (d) and distance (D, km) of total, anticyclonic eddies and cyclonic eddies identified from 1993 to 2017 (Numbers inside brackets denote the number of identified eddies)

GHOHBG_2019_v24n2_267_t0002.png 이미지

Table 3. Same as Table 2 but for each anticyclonic group

GHOHBG_2019_v24n2_267_t0003.png 이미지

Table 4. Same as Table 3 but for each cyclonic group

GHOHBG_2019_v24n2_267_t0004.png 이미지

References

  1. 김봉채, 최복경, 김병남, 2012. 동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향. Ocean. Polar Res., 34(3): 325-335. https://doi.org/10.4217/OPR.2012.34.3.325
  2. 박경애, 박지은, 최병주, 변도성, 이은일, 2013. 해양관측을 통해 획득한 과학적 지식에 기반한 과학교과서 동해 해류도. 한국해양학회지 바다, 18(4): 234-265.
  3. Boning, C.W. and R.G. Budich, 1992. Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr., 22(4): 361-381. https://doi.org/10.1175/1520-0485(1992)022<0361:EDIAPE>2.0.CO;2
  4. Byun, S.S., J.J. Park, K.I. Chang and R.W. Schmitt, 2010. Observation of near-inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy. Geophys. Res. Lett., 37(1): L01606. https://doi.org/10.1029/2009GL041601
  5. Chaigneau, A., A. Gizolme and C. Grados, 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79(2-4): 106-119. https://doi.org/10.1016/j.pocean.2008.10.013
  6. Chang, K.I., C.I. Zhang, C. Park, D.J. Kang, S.J. Ju and S.H. Lee, 2016. Oceanography of the East Sea (Japan Sea). Edited by Wimbush, M., Springer, 460.
  7. Chelton, D.B., M.G. Schlax and R.M. Samelson, 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91(2): 167-216. https://doi.org/10.1016/j.pocean.2011.01.002
  8. Chen, G., D. Wang and Y. Hou, 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res., 47: 178-185. https://doi.org/10.1016/j.csr.2012.07.011
  9. Chen, G., Y. Hou and X. Chu, 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116(C6): C06018.
  10. Eden, C., 2007. Eddy length scales in the North Atlantic Ocean. J. Geophys. Res., 112(C6): C06004.
  11. Faghmous, J.H., I. Frenger, Y. Yao, R. Warmka, A. Lindell and V. Kumar, 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2: 150028. https://doi.org/10.1038/sdata.2015.28
  12. Hong, G.H., D.K. Lee, D.B. Yang, Y.I. Kim, J.H. Park and C.H. Park, 2013. Eddy-and wind-sustained moderate primary productivity in the temperate East Sea (Sea of Japan). Biogeosciences, 10(6): 10429-10458. https://doi.org/10.5194/bgd-10-10429-2013
  13. Ichiye, T. and K. Takano, 1988. Mesoscale eddies in the Japan Sea. La mer, 26(2): 69-75.
  14. Isoda, Y., 1994. Warm eddy movements in the eastern Japan Sea. J. Oceanogr. Soc. Japan, 50(1): 1-15. https://doi.org/10.1007/BF02233852
  15. Isoda, Y., 1996. Interaction of a warm eddy with the coastal current at the eastern boundary area in the Tsushima Current region. Cont. Shelf Res., 16(9): 1149-1163. https://doi.org/10.1016/0278-4343(95)00057-7
  16. Kang, D. and E.N. Curchitser, 2015. Energetics of eddy-mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45(4): 1103-1120. https://doi.org/10.1175/JPO-D-14-0200.1
  17. Kang, D. and O. Fringer, 2010. On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40(11): 2539-2545. https://doi.org/10.1175/2010JPO4497.1
  18. Kim, K., K.R. Kim, Y.G. Kim, Y.K. Cho, D.J. Kang, M. Takematsu and Y. Volkov, 2004. Water masses and decadal variability in the East Sea (Sea of Japan). Prog. Oceanogr., 61(2-4): 157-174. https://doi.org/10.1016/j.pocean.2004.06.003
  19. Kim, Y.G., K. Kim, Y.K. Cho and H. Ossi, 2000. CTD data processing for CREAMS expeditions: Thermal-lag correction of Sea-Bird CTD. Ocean Sci. J., 35(4): 192-199.
  20. Lee, D.K. and P.P. Niiler, 2005. The energetic surface circulation patterns of the Japan/East Sea. Deep-sea Res. II, 52(11-13): 1547-1563. https://doi.org/10.1016/j.dsr2.2003.08.008
  21. Lee, D.K. and P.P. Niiler, 2010. Eddies in the southwestern East/Japan Sea. Deep-sea Res. I, 57(10): 1233-1242. https://doi.org/10.1016/j.dsr.2010.06.002
  22. Lim, J.H., S. Son, J.W. Park, J.H. Kwak, C.K. Kang, Y.B. Son and S.H. Lee, 2012. Enhanced biological activity by an anticyclonic warm eddy during early spring in the East Sea (Japan Sea) detected by the geostationary ocean color satellite. Ocean Sci. J., 47(3): 377-385. https://doi.org/10.1007/s12601-012-0035-1
  23. Lorenz, E.N., 1955. Available potential energy and the maintenance of the general circulation. Tellus, 7(2): 157-167. https://doi.org/10.1111/j.2153-3490.1955.tb01148.x
  24. Mitchell, D.A., W.J. Teague, M. Wimbush, D.R. Watts and G.G. Sutyrin, 2005. The Dok cold eddy. J. Phys. Oceangr., 35(3): 273-288. https://doi.org/10.1175/JPO-2684.1
  25. Morimoto, A., T. Yanagi and A. Kaneko, 2000. Eddy field in the Japan Sea derived from satellite altimetric data. J. Oceanogr. Soc. Japan, 56(4): 449-462. https://doi.org/10.1023/A:1011184523983
  26. Morison, J., R. Andersen, N. Larson, E. D'Asaro and T. Boyd, 1994. The correction for thermal-lag effects in Sea-Bird CTD data. J. Atmos. Ocean. Tech., 11(4): 1151-1164. https://doi.org/10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2
  27. Nam, S. and J.H. Park, 2008. Semidiurnal internal tides off the east coast of Korea inferred from synthetic aperture radar images. Geophys. Res. Lett., 35(5): L05602. https://doi.org/10.1029/2007GL032536
  28. Nam, S., S.T. Yoon, J.H. Park, Y.H. Kim and K.I. Chang, 2016. Distinct characteristics of the intermediate water observed off the east coast of Korea during two contrasting years J. Geophys. Res., 121(7): 5050-5068. https://doi.org/10.1002/2015JC011593
  29. Nan, F., Z. He, H. Zhou and D. Wang, 2011. Three long-lived anticyclonic eddies in the northern South China Sea. J. Geophys. Res., 116(C5): C05002.
  30. Park, J.H. and D.R. Watts, 2005. Near-inertial oscillations interacting with mesoscale circulation in the southwestern Japan/East Sea. Geophys. Res. Lett., 32(10): L10611. https://doi.org/10.1029/2005GL022936
  31. Park, J.H. and D.R. Watts, 2006. Internal tides in the southwestern Japan/East Sea, J. Phys. Oceanogr., 36: 22-34. https://doi.org/10.1175/JPO2846.1
  32. Prants, S.V., V.I. Ponomarev, M.V. Budyansky, M.Y. Uleysky and P.A. Fayman, 2015. Lagrangian analysis of the vertical structure of eddies simulated in the Japan Basin of the Japan/East Sea. Ocean Model., 86: 128-140. https://doi.org/10.1016/j.ocemod.2014.12.010
  33. Rhines, P.B., 1975. Waves and turbulence on a beta-plane. J. Fluid Mech., 69(3): 417-443. https://doi.org/10.1017/S0022112075001504
  34. Shin, H.R., C.W. Shin, C. Kim, S.K. Byun and S.C. Hwang, 2005. Movement and structural variation of warm eddy WE92 for three years in the western East/Japan Sea. Deep-sea Res. II, 52(11-13): 1742-1762. https://doi.org/10.1016/j.dsr2.2004.10.004
  35. Souza, J.M.A.C., C. de Boyer Montegut and P.Y. Le Traon, 2011. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci., 7(3): 317-334. https://doi.org/10.5194/os-7-317-2011
  36. Takematsu, M., A.G. Ostrovski and Z. Nagano, 1999. Observations of eddies in the Japan Basin interior. J. Oceanogr. Soc. Japan, 55(2): 237-246. https://doi.org/10.1023/A:1007846114165
  37. Toba, Y., H. Kawamura, F. Yamashita and K. Hanawa, 1984. Structure of horizontal turbulence in the Japan Sea. In Ocean Hydrodynamics of the Japan and East China Seas, Elsevier, 39: 317-332.
  38. Zu, T., D. Wang, C. Yan, I. Belkin, W. Zhuang and J. Chen, 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dyn., 63(5): 519-531. https://doi.org/10.1007/s10236-013-0612-6

Cited by

  1. Occurrence and Evolution of Mesoscale Thermodynamic Phenomena in the Northern Part of the East Sea (Japan Sea) Derived from Satellite Altimeter Data vol.13, pp.6, 2019, https://doi.org/10.3390/rs13061071
  2. Nonseasonal Variations in Near-Inertial Kinetic Energy Observed Far below the Surface Mixed Layer in the Southwestern East Sea (Japan Sea) vol.10, pp.1, 2022, https://doi.org/10.3390/jmse10010009
  3. Mesoscale Dynamics and Eddy Heat Transport in the Japan/East Sea from 1990 to 2010: A Model-Based Analysis vol.10, pp.1, 2019, https://doi.org/10.3390/jmse10010033