DOI QR코드

DOI QR Code

동해 용존 규소의 연직분포

Vertical Distribution of Dissolved Silica in the East Sea

  • JEONG, SEONGHEE (Department of Oceanography, Pusan National University) ;
  • LEE, TONGSUP (Department of Oceanography, Pusan National University)
  • 투고 : 2018.11.24
  • 심사 : 2019.02.28
  • 발행 : 2019.05.31

초록

동해에서 용존 규소의 분포 특성을 현존하는 가장 광역적인 탐사였던 1999-2000년도 ONR-JES 탐사 자료와 1970년도 일본 자료와 대조해서 살펴보았다. 동해에서 현재 진행 중인 해수교체 양상의 변동과 용존 규소의 분포를 인산염 대 용존 규소의 비로 고찰한 결과로 일차생산에 대한 용존 규소의 제한이 점차 가중될 것이란 가설을 제시하였다. 용존 규소의 제한은 일차생산자의 종조성을 바꾸고 이어서 내려보내기 생산에서 유기입자의 침강이 광물질 껍데기 보다는 유기 점착물 침강에 의한 기여가 커질 것이라 예상된다. 해양에서 규소 순환이 탄소 순환과 깊숙이 연계되어 있는 점에 비추어 미래의 온난화된 대양이 동해처럼 거동하게 될지는 시의 적절한 연구 주제가 될 것이라 전망하였다.

Soluble silica profiles of the East Sea were described by comparing the 1970 Japanese data with the 1999-2000 ONR-JES data set, which is the most extensive collection of data currently available. Considering the ventilation mode change happened/ongoing and the features of the soluble silica to phosphate ratio we suggest a hypothesis that a utilization of soluble silica by the primary production might be exacerbated in the future. According to the silica limitation hypothesis composition of primary producers will be altered and followed by a weaker contribution of ballast against aggregates in the export production. Since the silicate cycle is deeply intertwined with the carbon cycle whether the warmed future ocean would behave like the East Sea appears to a potentially promising study theme.

키워드

GHOHBG_2019_v24n2_226_f0001.png 이미지

Fig 1. ONR-JES 1999_summer (top panels) and 2000_winter cruise data plots (lower panels) for depth profile of silicic acid (a, d), phosphate (b, e) and phosphate vs. silicic acid (c, f).

GHOHBG_2019_v24n2_226_f0002.png 이미지

Fig 2. Silicic acid profiles against sigma-theta in summer 1999 and winter 2000 in the East Sea (left panel) and station map (right panel). Data from ONR-JES program.

참고문헌

  1. Baines, S.B., B. Twining, M.A. Brzezinski, D. nelson, M.A. Brzezinski, D. Nunez-Milland, D. Assael, S. Vogt, H. McDaniel, 2010. A role for picocyanobacteria in the ocean's Si cycle. Eos Trans. AGU 91(Ocean Sci. Meet. Suppl.): BO25G-21 (Abstr.)
  2. Bidle, K.D. and F. Azam, 1999. Accelerated dissolution of diatom silica by natural marine bacterial assemblages. Nature, 397: 508-512. https://doi.org/10.1038/17351
  3. Chen, C-TA, H.-K. Lui, C.-H. Hsieh, T. Yanagi, N. Kosugi, M. Ishii and G.-C. Gong, 2017. Deep oceans may acidify faster than anticipated due to global warming. Nature Clim. Change, doi:10.1038/s41558-017-0003-y.
  4. Gamo, T., N. Nakayama, N. Takahata, Y. Sano, J. Zhang, E. Yamazaki, S. Taniyasu and Y. Yamashita, 2014. The Sea of Japan and its unique chemistry revealed by time-series observations over the last 30 years, Monogr. Environ. Earth Planets, 2: 1-22, doi:10.5047/meep.2014.00201.0001.
  5. Isshiki, K., Y. Sohrin and E. Nakayama, 1991. Form of dissolved silicon in seawater. Mar. Chem., 32: 1-8. https://doi.org/10.1016/0304-4203(91)90021-N
  6. Kido, K. and M. Nishimura, 1973. Regeneration of silica in the ocean I. the japan Sea as a model of closed system. J Oceanogr. Soc. Japan, 29: 185-192. https://doi.org/10.1007/BF02108525
  7. Kim, B.-G., T. Lee and I.-N. Kim, 2010, Phosphate vs. silicate discontuity layer developed at mid-depth in the East Sea. Oce. Polar Res., 32: 331-336, doi: 10.4217/OPR.2010.32.3.331 (in Korean).
  8. Kim, T.-H., G. Kim, Y. Shen and R, Benner, 2017. Strong linkages between surface and deep-water dissolved organic matter in the East/Japan Sea. Biogeosciences, 14: 2561-2570. doi:10.5194/bg-14-2561-2017.
  9. Lee, D., 2018. High concentration chlorophyll a rings associated with the formation of intrathermocline eddies. Limnol. Oceanogr., 63: 2806-2814, doi: 10.1002/lno.11010.
  10. Lee, S.-R., T.K. Rho, J.H. Oak, J.A. Lee, T. Lee and I.K. Chung, 2012. Metagenomic examination of diversity within eukaryotic plankton from the Ulleung Basin in the East Sea of Korea. J. Plant Biol., 55: 310-315, doi 10.1007/s12374-011-0031-0.
  11. Nelson, D.M., P. Treguer, M.A. Brzezinski, A. Leynaert and B. Queguiner, 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship with biogenic sedimentation. Glob. Biogeochem. Cycles, 9: 359-372. https://doi.org/10.1029/95GB01070
  12. Ragueneau, O., P. Treguer, A. Leynaert, R.F. Anderson, M.A. Brzezinski, D.J. DeMaster, R.C. Dugdale, J. Dymond, G. Fischer, R. Francois, C. Heinze, E. Maier-Reimer, V. Martin-Jezequel, D.M. Nelson and B.Queguiner, 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4): 317-365. https://doi.org/10.1016/S0921-8181(00)00052-7
  13. Sarmiento, J.L. and N. Gruber, 2006. Ocean Biogeochemical Dynamics. Princeton, NJ: Princeton Univ. Press. 526 pp.
  14. Schmidt, M., R. Botz, D. Rickert, G. Bohrmann, S.R. Hall and S. Mann, 2001. Oxygen isotopes of marine diatoms and relation to opal-A maturation. Geochim. Cosmochim Acta., 65: 201-211. https://doi.org/10.1016/S0016-7037(00)00534-2
  15. Treguer, P. and C.L. De La Rocha, 2013. World ocean silica cycle. Annual Rev. Mar Sci. DOI:10.1146/annurevmarine-121211-172346.
  16. Treguer, P., D.M. Nelson, A.J. van Bennekom, D.J. DeMaster, A. Leynaert and B. Queguiner, 1995. The balance of silica in the world ocean: a re-estimate. Science, 268: 375-379. https://doi.org/10.1126/science.268.5209.375
  17. Yoon, S.T., K.-I. Chang, S.H. Nam, T.K. Rho, D.-J. Kang, T. Lee, K.-A. Park, V. Lobanov, D. Kaplunenko, P. Tishchenko and K.-R. Kim, 2018. Re-initation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific Reports, 8: 1576. doi:10.1038/s41598-018-19952-4.