Browse > Article
http://dx.doi.org/10.7850/jkso.2019.24.2.226

Vertical Distribution of Dissolved Silica in the East Sea  

JEONG, SEONGHEE (Department of Oceanography, Pusan National University)
LEE, TONGSUP (Department of Oceanography, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.24, no.2, 2019 , pp. 226-235 More about this Journal
Abstract
Soluble silica profiles of the East Sea were described by comparing the 1970 Japanese data with the 1999-2000 ONR-JES data set, which is the most extensive collection of data currently available. Considering the ventilation mode change happened/ongoing and the features of the soluble silica to phosphate ratio we suggest a hypothesis that a utilization of soluble silica by the primary production might be exacerbated in the future. According to the silica limitation hypothesis composition of primary producers will be altered and followed by a weaker contribution of ballast against aggregates in the export production. Since the silicate cycle is deeply intertwined with the carbon cycle whether the warmed future ocean would behave like the East Sea appears to a potentially promising study theme.
Keywords
Dissolved silica; P:Si ratio; East Sea; Silica hypothesis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ragueneau, O., P. Treguer, A. Leynaert, R.F. Anderson, M.A. Brzezinski, D.J. DeMaster, R.C. Dugdale, J. Dymond, G. Fischer, R. Francois, C. Heinze, E. Maier-Reimer, V. Martin-Jezequel, D.M. Nelson and B.Queguiner, 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4): 317-365.   DOI
2 Sarmiento, J.L. and N. Gruber, 2006. Ocean Biogeochemical Dynamics. Princeton, NJ: Princeton Univ. Press. 526 pp.
3 Schmidt, M., R. Botz, D. Rickert, G. Bohrmann, S.R. Hall and S. Mann, 2001. Oxygen isotopes of marine diatoms and relation to opal-A maturation. Geochim. Cosmochim Acta., 65: 201-211.   DOI
4 Treguer, P. and C.L. De La Rocha, 2013. World ocean silica cycle. Annual Rev. Mar Sci. DOI:10.1146/annurevmarine-121211-172346.
5 Treguer, P., D.M. Nelson, A.J. van Bennekom, D.J. DeMaster, A. Leynaert and B. Queguiner, 1995. The balance of silica in the world ocean: a re-estimate. Science, 268: 375-379.   DOI
6 Yoon, S.T., K.-I. Chang, S.H. Nam, T.K. Rho, D.-J. Kang, T. Lee, K.-A. Park, V. Lobanov, D. Kaplunenko, P. Tishchenko and K.-R. Kim, 2018. Re-initation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific Reports, 8: 1576. doi:10.1038/s41598-018-19952-4.   DOI
7 Chen, C-TA, H.-K. Lui, C.-H. Hsieh, T. Yanagi, N. Kosugi, M. Ishii and G.-C. Gong, 2017. Deep oceans may acidify faster than anticipated due to global warming. Nature Clim. Change, doi:10.1038/s41558-017-0003-y.   DOI
8 Gamo, T., N. Nakayama, N. Takahata, Y. Sano, J. Zhang, E. Yamazaki, S. Taniyasu and Y. Yamashita, 2014. The Sea of Japan and its unique chemistry revealed by time-series observations over the last 30 years, Monogr. Environ. Earth Planets, 2: 1-22, doi:10.5047/meep.2014.00201.0001.   DOI
9 Isshiki, K., Y. Sohrin and E. Nakayama, 1991. Form of dissolved silicon in seawater. Mar. Chem., 32: 1-8.   DOI
10 Kido, K. and M. Nishimura, 1973. Regeneration of silica in the ocean I. the japan Sea as a model of closed system. J Oceanogr. Soc. Japan, 29: 185-192.   DOI
11 Nelson, D.M., P. Treguer, M.A. Brzezinski, A. Leynaert and B. Queguiner, 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship with biogenic sedimentation. Glob. Biogeochem. Cycles, 9: 359-372.   DOI
12 Kim, B.-G., T. Lee and I.-N. Kim, 2010, Phosphate vs. silicate discontuity layer developed at mid-depth in the East Sea. Oce. Polar Res., 32: 331-336, doi: 10.4217/OPR.2010.32.3.331 (in Korean).   DOI
13 Lee, D., 2018. High concentration chlorophyll a rings associated with the formation of intrathermocline eddies. Limnol. Oceanogr., 63: 2806-2814, doi: 10.1002/lno.11010.   DOI
14 Lee, S.-R., T.K. Rho, J.H. Oak, J.A. Lee, T. Lee and I.K. Chung, 2012. Metagenomic examination of diversity within eukaryotic plankton from the Ulleung Basin in the East Sea of Korea. J. Plant Biol., 55: 310-315, doi 10.1007/s12374-011-0031-0.   DOI
15 Baines, S.B., B. Twining, M.A. Brzezinski, D. nelson, M.A. Brzezinski, D. Nunez-Milland, D. Assael, S. Vogt, H. McDaniel, 2010. A role for picocyanobacteria in the ocean's Si cycle. Eos Trans. AGU 91(Ocean Sci. Meet. Suppl.): BO25G-21 (Abstr.)
16 Bidle, K.D. and F. Azam, 1999. Accelerated dissolution of diatom silica by natural marine bacterial assemblages. Nature, 397: 508-512.   DOI
17 Kim, T.-H., G. Kim, Y. Shen and R, Benner, 2017. Strong linkages between surface and deep-water dissolved organic matter in the East/Japan Sea. Biogeosciences, 14: 2561-2570. doi:10.5194/bg-14-2561-2017.   DOI