DOI QR코드

DOI QR Code

A study on evaluation of flexural toughness of synthetic fiber reinforced shotcrete

구조용 합성섬유 보강 숏크리트 휨인성 평가에 관한 연구

  • Received : 2019.04.08
  • Accepted : 2019.05.13
  • Published : 2019.05.31

Abstract

This study deals with shotcrete reinforcing performance according to the amount of synthetic fiber (PP fiber) and proper evaluation method. The shotcrete compressive strength, flexural strength and flexural toughness were tested by setting the mixing amounts of steel fiber ($37.0kg/m^3$) and synthetic fiber (PP fiber) as parameters ($5.0kg/m^3$, $7.0kg/m^3$ and $9.0kg/m^3$). Particularly, circular panel flexural toughness test (Road and Traffic Authority, RTA) was performed to evaluate the shotcrete energy absorption capacity. As a result, the compressive strength and the bending strength of the steel fiber reinforced shotcrete were large, but the flexural toughness of the synthetic fibe (PP fiber) reinforced shotcrete was large. Therefore, synthetic fiber (PP fiber) reinforced shotcrete is considered to have a reinforcing effect comparable to that of steel fiber reinforced shotcrete. Analysis of the relationship between the flexural toughness and the energy absorption capacity of synthetic fiber (PP fiber) reinforced shotcrete revealed that the energy absorbing ability is exhibited at a flexural toughness lower than the allowable standard (3.0 MPa). (Class A: 2.55 MPa = 202J, Class B: 2.72 MPa = 282J, Class C: 3.07 MPa = 403J). As a result of this study, it can be concluded that the actual shotcrete support performance can be evaluated by evaluating the support performance of the shotcrete measured at less than the allowable standard (3.0 MPa) at the actual tunnel site.

본 연구는 구조용 합성섬유(PP섬유) 혼입량에 따른 숏크리트 보강성능과 적정한 평가방법에 관한 것으로, 강섬유($37.0kg/m^3$)와 구조용 합성섬유(PP섬유) 혼입량을 매개변수($5.0kg/m^3$, $7.0kg/m^3$, $9.0kg/m^3$)로 설정하여 숏크리트 압축강도, 휨강도 및 휨인성 시험을 수행하였다. 특히, 판상의 숏크리트 에너지 흡수능력을 평가하기 위하여 원형 패널 휨인성 시험(Road and Traffic Authority, RTA)을 수행하였다. 검토결과, 압축강도 및 휨강도는 강섬유 보강 숏크리트가 다소크나, 실질적인 숏크리트 보강성능를 나타내는 휨인성은 구조용 합성섬유(PP섬유) 보강 숏크리트가 큰 것으로 분석됨에 따라, 강섬유 보강 숏크리트 대비 동등 이상의 보강효과를 발휘하는 것으로 검토되었다. 또한, 구조용 합성섬유(PP섬유) 혼입량에 따른 휨인성 및 에너지 흡수능력 상관관계에 의하면, 보시편 휨인성 시험(KS F 2566)의 허용기준 3.0 MPa이하조건에서 에너지 흡수능력이 발휘(A등급: 2.55 MPa = 202J, B등급: 2.72 MPa = 282J, C등급: 3.07 MPa = 403J)되는 것으로 검토되었다. 국내 터널현장에서 보수적으로 측정되는 강도개념의 숏크리트 휨인성(>3.0 MPa)을 본 연구의 숏크리트 에너지 흡수능력 상관관계로 지보성능을 평가할 경우, 보다 실질적이고 신뢰도 높은 숏크리트 지보성능 평가가 가능할 것으로 판단된다.

Keywords

TNTNB3_2019_v21n3_433_f0001.png 이미지

Fig. 1. Q-System chart

TNTNB3_2019_v21n3_433_f0002.png 이미지

Fig. 2. EFNARC-RTA relation

TNTNB3_2019_v21n3_433_f0003.png 이미지

Fig. 3. Compressive strength test

TNTNB3_2019_v21n3_433_f0004.png 이미지

Fig. 4. Flexural toughness test

TNTNB3_2019_v21n3_433_f0005.png 이미지

Fig. 5. RTA test

TNTNB3_2019_v21n3_433_f0006.png 이미지

Fig. 6. Test sample production view

TNTNB3_2019_v21n3_433_f0007.png 이미지

Fig. 7. Flexural strength according to fiber content

TNTNB3_2019_v21n3_433_f0008.png 이미지

Fig. 8. Flexural toughness according to fiber content

TNTNB3_2019_v21n3_433_f0009.png 이미지

Fig. 9. Steel fiber sample (37.0 kg/m3, m = 0.5%) load-displacement curve

TNTNB3_2019_v21n3_433_f0010.png 이미지

Fig. 10. Synthetic fiber sample (5.0 kg/m3, m = 0.55%) load-displacement curve

TNTNB3_2019_v21n3_433_f0011.png 이미지

Fig. 11. Synthetic fiber sample (7.0 kg/m3, m = 0.76%) load-displacement curve

TNTNB3_2019_v21n3_433_f0012.png 이미지

Fig. 12. Synthetic fiber sample (9.0 kg/m3, m = 1.00%) load-displacement curve

TNTNB3_2019_v21n3_433_f0013.png 이미지

Fig. 13. Flexural strength-Flexural toughness ratio relation

TNTNB3_2019_v21n3_433_f0014.png 이미지

Fig. 14. Flexural strength-Residual strength ratio relation

TNTNB3_2019_v21n3_433_f0015.png 이미지

Fig. 15. Maximum load according to fiber content

TNTNB3_2019_v21n3_433_f0016.png 이미지

Fig. 16. Energy Absorption Capacity according to fiber content

TNTNB3_2019_v21n3_433_f0017.png 이미지

Fig. 17. Steel fiber sample (37.0 kg/m3, m = 0.5%) load-displacement curve

TNTNB3_2019_v21n3_433_f0018.png 이미지

Fig. 18. Synthetic fiber sample (5.0 kg/m3, m = 0.55%) load-displacement curve

TNTNB3_2019_v21n3_433_f0019.png 이미지

Fig. 19. Synthetic fiber sample (7.0 kg/m3, m = 0.76%) load-displacement curve

TNTNB3_2019_v21n3_433_f0020.png 이미지

Fig. 20. Synthetic fiber sample (9.0 kg/m3, m = 1.00%) load-displacement curve

TNTNB3_2019_v21n3_433_f0021.png 이미지

Fig. 21. Flexural toughness - Energy absorbing capacity by fiber reinforcement

TNTNB3_2019_v21n3_433_f0022.png 이미지

Fig. 22. Flexural toughness - Energy absorption capacity relationships by fiber reinforcement

TNTNB3_2019_v21n3_433_f0023.png 이미지

Fig. 23. Q-chart (RTA energy absorption capacity)

Table 1. EFNARC-RTA relation energy absorption capacity

TNTNB3_2019_v21n3_433_t0001.png 이미지

Table 2. Shotcrete formulation table (kg/m3)

TNTNB3_2019_v21n3_433_t0002.png 이미지

Table 3. Type of sample

TNTNB3_2019_v21n3_433_t0003.png 이미지

Table 4. Compressive strength test results

TNTNB3_2019_v21n3_433_t0004.png 이미지

Table 5. Synthetic fiber shotcrete flexural toughness - energy absorption capacity relative grade criterion

TNTNB3_2019_v21n3_433_t0005.png 이미지

References

  1. ACI (1999) 544, "State of the art report on fiber reinforced concrete technical report", American Concrete Institute.
  2. ASTM (2008), C1550, "Standard test method for flexural toughness of fiber reinforced concrete (using centrally loaded round panel)", ASTM International, West Conshohocken, Pa.
  3. ASTM (2012), C1609, "Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading)", ASTM International, West Conshohocken, pa.
  4. Buratti, N., Mazzotti, C., Savoia, M. (2010), "Experimental study on the flexural behaviour of fibre reinforced concretes strengthened with steel and macro-synthetic fibres", Fracture Mechanics of Concrete and Concrete Structures - Assessment, Proceedings of FraMCoS-7, May 23-28, pp. 1286-1294.
  5. EFNARC (2011), "Panel tests such as the square panel test", Experts for Specialised Construction and Concrete Systems.
  6. JSCE (1984), "Method of test for flexural strength and flexural toughness of steel fibre reinforced concrete", Japanese Society of Civil Engineers, pp. 4.
  7. Korean Tunnelling and Underground Space (2014), A study on the optimal construction method of rockbolt in the Seoul metropolitan rapid transit (Suseo-Pyeongtaek) construction project and tunnel stability review of steel fiber reinforced shotcrete lining quality improvement plan, pp. 251-300.
  8. KS F 2405 (2017), "Standard test method for compressive strength of concrete", National Institute of Technology and Standards, Korea.
  9. KS F 2566 (2014), "Standard test method for flexural performance of fiber reinforced concrete", National Institute of Technology and Standards, Korea.
  10. Lee, S.Y., Park, Y.J., Kim, S.M., Yoo, G.H., Jang, S.I., Seo, Y.H. (2010), "A study on the performance evaluation of polypropylene fiber reinforced concrete", Tunnel and Underground Space, Vol. 20, No. 5, pp. 378-389.
  11. Ministry of Construction & Transportati (2004), A study on improvement of structural fiber reinforced shotcrete performance research report, Korea Agency for Infrastructure Technology Advancement, pp. 10-24, pp. 85-205.
  12. Ministry of Land, Infrastructure and Transport (2017), A study on the revision of tunnel design criteria, pp. 5-28.
  13. RTA (1999), T373, Determination of the toughness of a fiber reinforced shotcrete mix-round determinate panel test.
  14. Yoshida, S., Taguchi, F., Kishi, N., Mikami, H. (2002), "Corroboration test of shotcrete lining method with short-fiber mixed mortar using prototype tunnel model", Civil Engineering Research Institute of Hokkaido, Shotcrete For Underground Support IX, pp. 332-341.