DOI QR코드

DOI QR Code

Comparison of Domestic and Foreign Design Standards for Overall Stability of Soil Nailed Slopes

쏘일네일 보강 비탈면의 전체 안정성에 대한 국내외 설계기준 비교

  • Kim, Tae-Won (Headquarters, Doosan Engineering & Construction) ;
  • You, Kwang-Ho (Department of Civil Engineering, University of Suwon)
  • Received : 2019.04.23
  • Accepted : 2019.05.29
  • Published : 2019.06.01

Abstract

The international trend in soil nailed wall design has been evolved from the allowable stress design to limit state design and it is still currently ongoing. The design guidelines in Korea and Hong Kong still adopts the allowable stress design philosophy while those in others mostly do the limit state design. In this study, four soil nail design methods presented in the major design guidelines (U.S. FHWA GEC 7 (2015), Clouterre in France (1991), Soil nailing - best practice guidance in U.K. (CIRIA, 2005), Geoguide 7 in Hong Kong (2008) and Design standard for slope reinforcement work in Korea (KDS 11 70 15 f: 2016)) are described and analyzed in brief. The factor of safety and CDR (Capacity-to-Demand Ratio) which is used to measure the degree of conservatism of a design guide are obtained for the two cases. One is the design example presented in CIRIA (2005) and the other is in-situ loading test performed on the top of backfill of the soil nail wall to investigate the conservatism of design guidelines. It is revealed that the design method in overall stability of soil nail walls in domestic design method (CDR=0.78) is the most conservative and those by Clouterre (CDR=0.99, 1.09), Geoguide 7 (CDR=1.13, 0.97), U.S. FHWA (CDR=1.09, 1.07) and CIRIA (CDR=1.40, 1.16) in order from the second most conservative to the least conservative for the design example presented in CIRIA. For the in-situ loading test performed on the top of backfill of the soil nail wall, the order of conservatism is identical except that the places of Geoguide 7 (CDR=0.66, 0.72) and FHWA (CDR=0.73, 0.72) are changed. However, the results obtained among U.S. FHWA (2015) and Clouterre (1991) and Geoguide 7 (2008) are not so different.

쏘일네일링 벽체의 설계기법은 허용응력설계법에서 한계상태설계법으로 변화하고 있으며, 현재 대부분의 국가에서는 한계상태설계법을 적용하나 한국과 홍콩 등에서는 아직까지 허용응력설계법을 주로 사용하고 있다. 본 연구에서는 네 가지 대표적인 쏘일네일링 벽체의 설계기법인 미국의 FHWA(2015), 프랑스의 Clouterre(1991), 영국의 CIRIA(2005), 홍콩의 Geoguide 7(2008)과 국내기준인 비탈면 보강공법 설계기준(KDS 11 70 15 : 2016)의 비교를 수행하여, 현재 실무에 적용되고 있는 설계지침의 적정성을 고찰하였다. 각 기준들에 의한 설계결과의 비교를 위해 영국 CIRIA에 제시된 표준단면 및 현장재하시험이 수행된 쏘일네일링 벽체단면을 대상으로 분석을 시행하였으며, 각 설계기법의 보수적인 정도를 알 수 있는 지표인 CDR(Capacity-to-Demand Ratio)을 이용하여 국외 설계기준들과 국내기준의 차이를 비교하였다. 분석 결과, CIRIA 표준단면의 경우 국내기준에 의한 안정성 검토 방법이 가장 보수적(CDR=0.78)이며, 프랑스의 Clouterre(CDR=0.99, 1.09), 홍콩의 Geoguide 7(CDR=1.13, 0.97), 미국의 FHWA(CDR=1.09, 1.07) 및 영국의 CIRIA(CDR=1.40, 1.16)의 순서인 것으로 분석되었다. 한편, 현장재하시험이 시행된 쏘일네일링 벽체에 대한 검토결과는 홍콩의 Geoguide 7(CDR=0.66, 0.72)와 미국의 FHWA(CDR=0.73, 0.72) 순서가 바뀌었을 뿐 나머지는 동일한 결과를 보였다. 또한, 두 가지 case 동일하게 미국의 FHWA, 프랑스의 Clouterre와 홍콩의 Geoguide 7는 차이가 미미하나, 국내기준은 안정측설계의 경향이 크고 영국의 CIRIA는 경우에 따라 불안정측 설계의 경향이 큰 것으로 분석되었다.

Keywords

HJHGC7_2019_v20n6_5_f0001.png 이미지

Fig. 1. A cross section view of example 1

HJHGC7_2019_v20n6_5_f0002.png 이미지

Fig. 2. Cross section view of in-situ loading test

Table 1. Summary of factors recommended by soil nailing wall design codes

HJHGC7_2019_v20n6_5_t0001.png 이미지

Table 2. Summary of properties of soil nail wall components

HJHGC7_2019_v20n6_5_t0002.png 이미지

Table 3. Results of overall stability of example 1

HJHGC7_2019_v20n6_5_t0003.png 이미지

Table 3. Results of overall stability of example 1 (Continued)

HJHGC7_2019_v20n6_5_t0004.png 이미지

Table 4. Summary of CDRs for example 1

HJHGC7_2019_v20n6_5_t0005.png 이미지

Table 5. Summary of properties of soil nail wall components

HJHGC7_2019_v20n6_5_t0006.png 이미지

Table 6. Overall stability analysis results for in-situ loading test

HJHGC7_2019_v20n6_5_t0007.png 이미지

Table 7. Summary of CDRs obtained by conducting the overall stability study for in-situ loading test

HJHGC7_2019_v20n6_5_t0008.png 이미지

References

  1. American Association of State and Highway Transportation Officials (2014), LRFD Bridge Design Specifications, 7th Edition, American Association of State Highway and Transportation Officials, Washington, USA, Section 3, pp. 1-173.
  2. Bishop, A. W. (1955), The use of the slip circle in the stability analysis of slopes, Geotechnique, 5: pp. 7-17. https://doi.org/10.1680/geot.1955.5.1.7
  3. BS EN 1997-1 (2004), Eurocode 7: Geotechnical design. Part 1: General rules, pp. 1-37.
  4. CLOUTERRE (1991), French National Research Project Clouterre - Recommendations Clouterre 1991, pp. 1-272.
  5. Construction Industry Research and Information Association (2005), Soil nailing - best practice guidance, London, UK, pp. 93-241.
  6. Federal Highway Administration (2015), Soil nail walls - reference manual. FHWA GEC 7. FHWA-NHI-14-007. Washington, USA, pp. 84-317.
  7. GEO (2008), Guide to soil nail design and construction. Geoguide 7. Civil engineering and development department. The government of the Hong Kong. Special Administrative Region. pp. 33-66.
  8. Halla Engineering & Construction Corp. and Vniel Consultant Co., Ltd. (2006), Development of assembling soil nailing method. Final report of core technology research & development of construction, Korea agency for infrastructure technology advancement, pp. 14-178 (In Korean).
  9. Kang, I. K., Kwon, Y. H., Park, S. Y., Lee, S. H. and Kim, H. T. (2008), Behavior analysis of soil nailed wall through large scaled load test, Journal of the Korean Geo-environmental society, Vol. 9, No. 3, pp. 51-60 (In Korean).
  10. Korean Construction Standard Center (2016), KDS 11 70 15 - Design standard for slope reinforcement work, p. 4 (In Korean).
  11. TERRASOL Geotechnical Consultants (1997), TALREN 97; Program for the stability analysis of geotechnical structures, Version 1, TERRASOL Geotechnical Consultants, France, pp. 1-10.