DOI QR코드

DOI QR Code

A New Putative Chitinase from Reticulitermes speratus KMT001

  • Ham, Youngseok (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Park, Han-Saem (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Kim, Tae-Jong (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2019.03.19
  • Accepted : 2019.05.13
  • Published : 2019.05.25

Abstract

Termites are pests that cause serious economic and cultural damage by digesting wood cellulose. Termites are arthropods and have an epidermis surrounded by a chitin layer. To maintain a healthy epidermis, termites have chitinase (${\beta}$-1,4-poly-N-acetyl glucosamidinase, EC 3.2.1.14), an enzyme that hydrolyzes the ${\beta}$-1,4 bond of chitin. In this study, the amino acid sequence of the gene, which is presumed to be termite chitinolytic enzyme (NCBI accession no. KC477099), was obtained from a transcriptomic analysis of Reticulitermes speratus KMT001 in Bukhan Mountain, Korea. An NCBI protein BLAST search confirmed that the protein is a glycoside hydrolase family 18 (GH18). The highest homology value found was 47%, with a chitinase from Araneus ventricosus. Phylogenetic analysis indicated that the KC477099 protein has the same origins as those of arthropods but has a very low similarity with other arthropod chitinases, resulting in separation at an early stage of evolution. The KC477099 protein contains two conserved motifs, which encode the general enzymatic characteristics of the GH18 group. The amino acid sequences $Asp^{156}-Trp^{157}-Glu^{158}$, which play an important role in the enzymatic activity of the GH18 group, were also present. This study suggests that the termite KC477099 protein is a new type of chitinase, which is evolutionarily distant from other insect chitinases.

Keywords

HMJGBP_2019_v47n3_371_f0001.png 이미지

Fig. 1. Multiple amino acid sequence alignment of KC477099 from R. speratus KMT001 and chitinase from 19 strains obtained from a protein BLAST search of the National Center for Biotechnology Information. Motifs I and II are indicated on the top of the alignments. The bold characteristics indicate the consensus sequences in the active sites of GH18. The star marks on the bottom of the alignments indicate the active sites of GH18 chitolectin chitotriosidase.

HMJGBP_2019_v47n3_371_f0002.png 이미지

Fig. 2. Phylogenetic analysis of KC477099 from R. speratus KMT001 and chitinase from 19 strains from a protein BLAST search at the National Center for Biotechnology Information. A neighbor-joining method with a bootstrap of 1,000 replications was used. The order and phylum of each strain are listed on the right side of the figure. KC477099 is indicated using a black arrow. Saccoglossus kowalevskii class is listed because it has not been assigned to an order.

Table 1. Putative chitinase genes from transcriptomic analysis of R. speratus KMT001.

HMJGBP_2019_v47n3_371_t0001.png 이미지

Table 2. Results of TBLASTN searches using the amino acid sequence of KC477099 (contig00176) ORF from R. speratus KMT001.

HMJGBP_2019_v47n3_371_t0002.png 이미지

References

  1. Arakane, Y., Muthukrishnan, S. 2010. Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences 67(2): 201-216. https://doi.org/10.1007/s00018-009-0161-9
  2. Aronson, N.N., Blanchard, C.J., Madura, J.D. 1997. Homology modeling of glycosyl hydrolase family 18 enzymes and proteins. Journal of Chemical Information and Computer Sciences 37(6): 999-1005. https://doi.org/10.1021/ci970236v
  3. Badariotti, F., Thuau, R., Lelong, C., Dubos, M.-P., Favrel, P. 2007. Characterization of an atypical family 18 chitinase from the oyster Crassostrea gigas: Evidence for a role in early development and immunity. Developmental & Comparative Immunology 31(6): 559-570. https://doi.org/10.1016/j.dci.2006.09.002
  4. Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Review of Microbiology 22: 87-108. https://doi.org/10.1146/annurev.mi.22.100168.000511
  5. Brydon, L.J., Gooday, G.W., Chappell, L.H., King, T.P. 1987. Chitin in egg shells of Onchocerca gibsoni and Onchocerca volvulus. Molecular and Biochemical Parasitology 25(3): 267-272. https://doi.org/10.1016/0166-6851(87)90090-9
  6. Bussink, A.P., Speijer, D., Aerts, J.M., Boot, R.G. 2007. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 177(2):959-970. https://doi.org/10.1534/genetics.107.075846
  7. Cho, M.J., Shin, K., Kim, Y.-K., Kim, Y.-S., Kim, T.-J. 2010. Phylogenetic analysis of Reticulitermes speratus using the mitochondrial cytochrome C oxidase subunit I gene. Journal of the Korean Wood Science and Technology 38(2): 135-139. https://doi.org/10.5658/WOOD.2010.38.2.135
  8. Fukamizo, T., Speirs, R.D., Kramer, K.J. 1985. Comparative biochemistry of mycophagous and non-mycophagous grain beetles. Chitinolytic activities of foreign and sawtoothed grain beetles. Comparative Biochemistry and Physiology BBiochemistry & Molecular Biology 81(1): 207-209. https://doi.org/10.1016/0305-0491(85)90184-1
  9. Fukamizo, T. 2000. Chitinolytic enzymes: catalysis, substrate binding, and their application. Current Protein & Peptide Science 1(1): 105-124. https://doi.org/10.2174/1389203003381450
  10. Guan, Y.Q., Chen, J.M., Li, Z.B., Feng, Q.L., Liu, J.M. 2011. Immobilisation of bifenthrin for termite control. Pest Management Science 67(2): 244-251. https://doi.org/10.1002/ps.2065
  11. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Abdillah, I.B., Arsyad, W.O.M. 2018. Resistance of methyl methacrylate-impregnated wood to subterranean termite attack. Journal of the Korean Wood Science and Technology 46(6): 748-755 https://doi.org/10.5658/WOOD.2018.46.6.748
  12. Han, J.H., Lee, K.S., Li, J., Kim, I., Je, Y.H., Kim, D.H., Sohn, H.D., Jin, B.R. 2005. Cloning and expression of a fat body-specific chitinase cDNA from the spider, Araneus ventricosus. Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology 140(3): 427-435. https://doi.org/10.1016/j.cbpc.2004.11.009
  13. Henrissat, B., Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 293 (Pt 3): 781-788. https://doi.org/10.1042/bj2930781
  14. Henrissat, B., Davies, G. 1997. Structural and sequencebased classification of glycoside hydrolases. Current Opinion in Structural Biology 7(5): 637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
  15. Henrissat, B. 1999. Classification of chitinases modules. EXS 87: 137-156.
  16. Huang, Q.S., Yan, J.H., Tang, J.Y., Tao, Y.M., Xie, X.L., Wang, Y., Wei, X.Q., Yan, Q.H., Chen, Q.X. 2010. Cloning and tissue expressions of seven chitinase family genes in Litopenaeus vannamei. Fish and Shellfish Immunology 29(1): 75-81. https://doi.org/10.1016/j.fsi.2010.02.014
  17. Husen, T.J., Kamble, S.T. 2013. Delayed toxicity of two chitinolytic enzyme inhibitors (psammaplin A and pentoxifylline) against eastern subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology 106(4): 1788-1793. https://doi.org/10.1603/EC12442
  18. Husen, T.J., Kamble, S.T., Stone, J.M. 2015. Effect of pentoxifylline on chitinolytic enzyme activity in the eastern subterranean termite (Isoptera:Rhinotermitidae). Journal of Entomological Science 50(4): 295-310. https://doi.org/10.18474/JES15-14.1
  19. Kawada, M., Hachiya, Y., Arihiro, A., Mizoguchi, E. 2007. Role of mammalian chitinases in inflammatory conditions. The Keio Journal of Medicine 56(1):21-27. https://doi.org/10.2302/kjm.56.21
  20. Kim, S.H., Chung, Y.J. 2017. Ingestion toxicity of fipronil on Reticulitermes speratus kyushuensis (Isoptera: Rhinotermitidae) and its applicability as a termite bait. Journal of the Korean Wood Science and Technology 45(2): 159-167. https://doi.org/10.5658/WOOD.2017.45.2.159
  21. Korb, J., Hoffmann, K., Hartfelder, K. 2012. Molting dynamics and juvenile hormone titer profiles in the nymphal stages of a lower termite, Cryptotermes secundus (Kalotermitidae)--signatures of developmental plasticity. Journal of Insect Physiology 58(3): 376-383. https://doi.org/10.1016/j.jinsphys.2011.12.016
  22. Kramer, K.J., Koga, D. 1986. Insect chitin - physical state, synthesis, degradation and metabolicregulation. Insect Biochemistry 16(6): 851-877. https://doi.org/10.1016/0020-1790(86)90059-4
  23. Kramer, K.J., Muthukrishnan, S. 1997. Insect chitinases:Molecular biology and potential use as biopesticides. Insect Biochemistry and Molecular Biology 27(11): 887-900. https://doi.org/10.1016/S0965-1748(97)00078-7
  24. Liu, N., Zhang, L., Zhou, H., Zhang, M., Yan, X., Wang, Q., Long, Y., Xie, L., Wang, S., Huang, Y., Zhou, Z. 2013. Metagenomic insights into metabolic capacities of the gut microbiota in a funguscultivating termite (Odontotermes yunnanensis). PLOS ONE 8(7): e69184. https://doi.org/10.1371/journal.pone.0069184
  25. Lu, Y., Zen, K.C., Muthukrishnan, S., Kramer, K.J. 2002. Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochemistry and Molecular Biology 32(11): 1369-1382. https://doi.org/10.1016/S0965-1748(02)00057-7
  26. Matsui, T., Tokuda, G., Shinzato, N. 2009. Termites as functional gene resources. Recent Patents on Biotechnology, 3(1): 10-18. https://doi.org/10.2174/187220809787172687
  27. Merzendorfer, H., Zimoch, L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology 206(24): 4393-4412. https://doi.org/10.1242/jeb.00709
  28. Mishra, S.C., Sensarma, P.K. 1981. Chitinase activity in the digestive-track of termites (Isoptera). Material Und Organismen 16(2): 157-160.
  29. Mun, S.P., Nicholas, D.D. 2017. Effect of proanthocyanidin-rich efrom Pinus radiata bark on termite feeding deterrence. Journal of the Korean Wood Science and Technology 45(6): 702-727.
  30. Nei, M., Saitou, N. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.
  31. Park, H.-S., Ham, Y., Ahn, H.-H., Shin, K., Kim, Y.-S., Kim, T.-J. 2014. A new ${\alpha}$-amylase from Reticulitermes speratus KMT1. Journal of the Korean Wood Science and Technology 42(2):149-156. https://doi.org/10.5658/WOOD.2014.42.2.149
  32. Rathore, A.S., Gupta, R.D. 2015. Chitinases from bacteria to human: Properties, applications, and future perspectives. Enzyme Research 2015 (Article ID 791907): 8.
  33. Reardon, D., Farber, G.K. 1995. The structure and evolution of alpha/beta barrel proteins. The FASEB Journal 9(7): 497-503. https://doi.org/10.1096/fasebj.9.7.7737457
  34. Renkema, G.H., Boot, R.G., Au, F.L., Donker-Koopman, W.E., Strijland, A., Muijsers, A.O., Hrebicek, M., Aerts, J.M. 1998. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. European Journal of Biochemistry 251(1-2): 504-509. https://doi.org/10.1046/j.1432-1327.1998.2510504.x
  35. Reynolds, S.E., Samuels, R.I. 1996. Physiology and biochemistry of insect moulting fluid. Advances in Insect Physiology 26: 157-232. https://doi.org/10.1016/S0065-2806(08)60031-4
  36. Sandoval-Mojica, A.F., Scharf, M.E. 2016. Silencing gut genes associated with the peritrophic matrix of Reticulitermes flavipes (Blattodea: Rhinotermitidae) increases susceptibility to termiticides. Insect Molecular Biology 25(6): 734-744. https://doi.org/10.1111/imb.12259
  37. Sharma, N., Sharma, K.P., Gaur, R., Gupta, V.K. 2011. Role of chitinase in plant defense. Asian Journal of Biochemistry 6(1): 29-37. https://doi.org/10.3923/ajb.2011.29.37
  38. Sinnott, M. 1990. Catalytic mechanisms of enzymic glycosyl transfer. Chemical Reviews 90(7):1171-1202. https://doi.org/10.1021/cr00105a006
  39. Synstad, B., Gaseidnes, S., Van Aalten, D.M., Vriend, G., Nielsen, J.E., Eijsink, V.G. 2004. Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. European Journal of Biochemistry 271(2): 253-262. https://doi.org/10.1046/j.1432-1033.2003.03923.x
  40. Taira, T., Ohnuma, T., Yamagami, T., Aso, Y., Ishiguro, M., Ishihara, M. 2002. Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Bioscience, Biotechnology, and Biochemistry 66(5): 970-977. https://doi.org/10.1271/bbb.66.970
  41. Tamura, K., Dudley, J., Nei, M., Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24(8): 1596-1599. https://doi.org/10.1093/molbev/msm092
  42. Terwisscha van Scheltinga, A.C., Hennig, M., Dijkstra, B.W. 1996. The 1.8 A resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18. Journal of Molecular Biology 262(2): 243-257. https://doi.org/10.1006/jmbi.1996.0510
  43. Thomas, C.J., Gooday, G.W., King, L.A., Possee, R.D. 2000. Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene. Journal of General Virology 81(Pt 5):1403-1411. https://doi.org/10.1099/0022-1317-81-5-1403
  44. van Eijk, M., van Roomen, C.P., Renkema, G.H., Bussink, A.P., Andrews, L., Blommaart, E.F., Sugar, A., Verhoeven, A.J., Boot, R.G., Aerts, J.M. 2005. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. International Immunology 17(11): 1505-1512. https://doi.org/10.1093/intimm/dxh328
  45. Zhang, H., Huang, X., Fukamizo, T., Muthukrishnan, S., Kramer, K.J. 2002. Site-directed mutagenesis and functional analysis of an active site tryptophan of insect chitinase. Insect Biochemistry and Molecular Biology 32(11): 1477-1488. https://doi.org/10.1016/S0965-1748(02)00068-1
  46. Zhu, K.Y., Merzendorfer, H., Zhang, W., Zhang, J., Muthukrishnan, S. 2016. Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology 61(1): 177-196. https://doi.org/10.1146/annurev-ento-010715-023933