DOI QR코드

DOI QR Code

Development of Molecular Marker through Genome Realignment for Specific Detection of Xanthomonas campestris pv. campestris Race 5, a Pathogen of Black Rot Disease

  • Received : 2019.01.24
  • Accepted : 2019.04.21
  • Published : 2019.05.28

Abstract

Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is the most damaging disease in Brassica crops around the world. In this study, we developed a molecular marker specific to Xcc race 5. To do this, the available whole genome sequences of Xcc races/strains and Xc subspecies were aligned and identified a highly variable genomic region (XccR5-89.2). Subsequently, a primer set covering the 'XccR5-89.2' region was designed and tested against the genomic DNA of Xcc races/strains, Xc subspecies and other plant-infecting bacterial strains (Pseudomonas syringae pv. maculicola and Erwinia carotovora subsp. carotovora). The results showed that the 'XccR5-89.2' primer pair amplified a 2,172-bp fragment specific to Xcc race 5. Moreover, they also amplified a 1,515-bp fragment for Xcc race 1 and an over 3,000-bp fragment for Xcc race 3. However, they did not amplify any fragments from the remaining Xcc races/strains, subspecies or other bacterial strains. The 'XccR5-89.2' primer pair was further PCR amplified from race-unknown Xcc strains and ICMP8 was identified as race 5 among nine race-unknown Xcc strains. Further cloning and sequencing of the bands amplified from race 5 and ICMP8 with 'XccR5-89.2' primers revealed both carrying identical sequences. The results showed that the 'XccR5-89.2' marker can effectively and proficiently detect, and identify Xcc race 5 from Xcc races/strains, subspecies and other plant-infecting bacteria. To our knowledge, this is the first report for an Xcc race 5-specific molecular marker.

Keywords

References

  1. Vicente JG, Conway J, Roberts SJ, Taylor JD. 2001. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91: 492-499. https://doi.org/10.1094/PHYTO.2001.91.5.492
  2. Soengas P, Hand P, Vicente JG, Pole JM, Pink DAC. 2007. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor. Appl. Genet. 114: 637-645. https://doi.org/10.1007/s00122-006-0464-2
  3. Lema M, Cartea ME, Sotelo T, Velasco P, Soengas P. 2012. Discrimination of Xanthomonas campestris pv. campestris races among strains from northwestern Spain by Brassica spp. genotypes and rep-PCR. Eur. J. Plant Pathol. 133: 159-169. https://doi.org/10.1007/s10658-011-9929-5
  4. Williams PH. 1980. Black rot: a continuing threat to world crucifers. Plant Dis. 64: 736-742. https://doi.org/10.1094/PD-64-736
  5. Cook AA, Walker JC, Larson RH. 1952. Studies on the disease cycle of black rot of crucifers. Phytopathology 42: 162-167.
  6. Kifuji Y, Hanzawa H, Terasawa Y, Ashutosh, Nishio T. 2013. QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers. Euphytica 190: 289-295. https://doi.org/10.1007/s10681-012-0847-1
  7. Tonu NN, Shimizu M, Karim MM, Kawanabe T, Fujimoto R, Okazaki K, et al. 2013. Comparison of positions of QTLs conferring resistance to Xanthomonas campestris pv. campestris in Brassica oleracea. Am. J. Plant Sci. 4: 11-20.
  8. Massomo SMS, Nielsen H, Mabagala RB, Mansfeld-Giese K, Hockenhull J, Mortensen CN. 2003. Identification and characterisation of Xanthomonas campestris pv. campestris strains from Tanzania by pathogenicity tests, biolog, rep-PCR and fatty acid methyl ester analysis. Eur. J. Plant Pathol. 109: 775-789. https://doi.org/10.1023/A:1026194402701
  9. Kim B. 1986. Testing for detection of Xanthomonas campestris pv. campestris in crucifer seeds and seed disinfection. Korean J. Plant Pathol. 2: 96-101.
  10. Kamoun S, Kamdar HV, Tola E, Kado CI. 1992. Incompatible interactions between Crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpK locus. Mol. Plant-Microbe Interact. 5: 22-33. https://doi.org/10.1094/MPMI-5-022
  11. Fargier E, Manceau C. 2007. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 56: 805-818. https://doi.org/10.1111/j.1365-3059.2007.01648.x
  12. Cruz J, Tenreiro R, Cruz L. 2017. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J. Plant Pathol. 99: 403-414.
  13. Afrin KS, Rahim MA, Park JI, Natarajan S, Rubel MH, Kim HT, et al. 2018. Screening of cabbage (Brassica oleracea L.) germplasm for resistance to black rot. Plant Breed. Biotechnol. 6: 30-43. https://doi.org/10.9787/PBB.2018.6.1.30
  14. Jensen BD, Vicente JG, Manandhar HK, Roberts SJ. 2010. Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable Brassica fields in Nepal. Plant Dis. 94: 298-305. https://doi.org/10.1094/PDIS-94-3-0298
  15. Vicente JG, Holub EB. 2013. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant Pathol. 14: 2-18. https://doi.org/10.1111/j.1364-3703.2012.00833.x
  16. Galan J, Collmer A. 1999. Type III secretion machines:bacterial devices for protein delivery into host cells. Science 284: 1322-1328. https://doi.org/10.1126/science.284.5418.1322
  17. Buttner D, He SY. 2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150: 1656-1664. https://doi.org/10.1104/pp.109.139089
  18. Zaccardelli M, Campanile F, Spasiano A, Merighi M. 2007. Detection and identification of the crucifer pathogen, Xanthomonas campestris pv. campestris, by PCR amplification of the conserved Hrp/type III secretion system gene hrcC. Eur. J. Plant Pathol. 118: 299-306. https://doi.org/10.1007/s10658-007-9115-y
  19. Jiang BL, He YQ, Cen WJ, Wei HY, Jiang GF, Jiang W, et al. 2008. The type III secretion effector xopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res. Microbiol. 159: 216-220. https://doi.org/10.1016/j.resmic.2007.12.004
  20. Ignatov AN, Monakhos GF, Djalilov FS, Pozmogova GV. 2002. Avirulence gene from Xanthomonas campestris pv. campestris homologous to the avrBs2 locus is recognized in race-specific reaction by two different resistance genes in brassicas. Russ. J. Genet. 38: 1404-1410. https://doi.org/10.1023/A:1021643907032
  21. Song ES, Kim SY, Noh TH, Cho H, Chae SC, Lee BM. 2014. PCR-based assay for rapid and specific detection of the new Xanthomonas oryzae pv. oryzae K3a race using an AFLPderived marker. J. Microbiol. Biotechnol. 24: 732-739. https://doi.org/10.4014/jmb.1311.11005
  22. Rubel MH, Robin AHK, Natarajan S, Vicente JG, Kim HT, Park JI, et al. 2017. Whole-genome re-alignment facilitates development of specific molecular markers for races 1 and 4 of Xanthomonas campestris pv. campestris, the cause of black rot disease in Brassica oleracea. Int. J. Mol. Sci. 18(12) pii: E2523. https://doi.org/10.3390/ijms18122523
  23. Afrin KS, Rahim MA, Rubel MH, Natarajan S, Song JY, Kim HT, et al. 2018. Development of race-specific molecular marker for Xanthomonas campestris pv. campestris race 3, the causal agent of black rot of crucifers. Can. J. Plant Sci. 98:1119-1125. https://doi.org/10.1139/cjps-2018-0035
  24. King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44: 301-3.7.
  25. Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14: 1394-1403. https://doi.org/10.1101/gr.2289704
  26. Luongo L, Vitale S, Haegi A, Belisario A. 2012. Development of SCAR markers and PCR assays for Fusarium oxysporum f. sp. melonis race 2 specific detection. J. Plant Pathol. 94: 193-199.
  27. Lin YH, Chang JY, Liu ET, Chao CP, Huang JW, Chang PFL.2009. Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 123: 353-365. https://doi.org/10.1007/s10658-008-9372-4
  28. Wang BT, Hu XP, Li Q, Hao BJ, Zhang B, Li GB, et al. Development of race-specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. tritici. Plant Dis. 94: 221-228.
  29. Ferreira RM, de Oliveira ACP, Moreira LM, Belasque J, Gourbeyre E, Siguier P, et al. 2015. A TALE of Transposition:Tn3-like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads. MBio 6: e02505-14.
  30. Klaer R, Kuhn S, Tillmann E, Fritz H-J, Starlinger P. 1981. The sequence of IS4. Mol. Gen. Genet. 181: 169-175. https://doi.org/10.1007/BF00268423
  31. Vorholter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, et al. 2008. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J. Biotechnol. 134: 33-45. https://doi.org/10.1016/j.jbiotec.2007.12.013
  32. Bolot S, Cerutti A, Carrere S, Arlat M, Fischer-Le Saux M, Portier P, et al. 2015. Genome sequences of the race 1 and race 4 Xanthomonas campestris pv. campestris strains CFBP 1869 and CFBP 5817. Genome Announc. 3: e01023-15.
  33. Bolot S, Guy E, Carrere S, Barbe V, Arlat M, Noel LD. 2013. Genome sequence of Xanthomonas campestris pv. campestris strain Xca5. Genome Announc. 1: e00032-12.
  34. da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, et al. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417: 459-463. https://doi.org/10.1038/417459a
  35. Qian W, Jia Y, Ren S, He Y, Feng J, Lu L, et al. 2005. Comparative and functional genomic analyses of the pathogenicity of phytopathogen. Genome Res. 15: 757-767. https://doi.org/10.1101/gr.3378705
  36. Desai D, Li J-H, van Zijll de Jong E, Braun R, Pitman A, Visnovsky S, et al. 2015. Draft genome sequences of two New Zealand Xanthomonas campestris pv. campestris isolates, ICMP 4013 and ICMP 21080. Genome Announc. 3: e01247-15.
  37. Liu YC, Wang SC, Yu YJ, Fung KM, Yang MT, Tseng YH, et al. 2015. Complete genome sequence of Xanthomonas campestris pv. campestris strain 17 from Taiwan. Genome Announc. 3:e01466-15.
  38. Roux B, Bolot S, Guy E, Denance N, Lautier M, Jardinaud M-F, et al. 2015. Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 16: 975. https://doi.org/10.1186/s12864-015-2190-0
  39. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli S V, Patil PB, et al. 2011. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J. Bacteriol. 193: 5450-5464. https://doi.org/10.1128/JB.05262-11
  40. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Buttner D, et al. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187: 7254-7266. https://doi.org/10.1128/JB.187.21.7254-7266.2005

Cited by

  1. Development of PCR-Based Molecular Marker for Detection of Xanthomonas campestris pv. campestris Race 6, the Causative Agent of Black Rot of Brassicas vol.36, pp.5, 2020, https://doi.org/10.5423/ppj.oa.06.2020.0103
  2. Detection and identification of Xanthomonas campestris pv. campestris and pv. raphani by multiplex polymerase chain reaction using specific primers vol.105, pp.5, 2019, https://doi.org/10.1007/s00253-021-11159-4
  3. Prediction of PCR amplification from primer and template sequences using recurrent neural network vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-86357-1